
University of Bergen
Department of Informatics

An Optimization Perspective:

Understanding the Supervised

Learning Landscape

Author: Marius H. Naasen

Supervisor: Jan-J. Rückmann

Co-supervisor: Troels A. Bojesen

May, 2024

Abstract

The learning process of Machine Learning (ML) involves applying principles from math-

ematical optimization. This master’s thesis explored Supervised Learning (SL), which is

a subfield of ML where a computer program learns from a dataset under the guidance

of a knowledgeable supervisor. Our focus centered on two key ML algorithms: linear

regression and Support Vector Machines (SVM). For linear regression, we discussed well-

established optimization models, namely, Maximum Likelihood Estimation (MLE) and

Maximum a Posteriori (MAP). After presenting what can be considered the primal prob-

lem, specifically, the soft-margin SVM, we examined the optimization used to derive the

corresponding dual problem. We also emphasized Hyperparameter Optimization (HPO),

acknowledging the influence of algorithm settings on ML program performance through

hyperparameter tuning, presented here as a bilevel optimization model. In conclusion,

numerical experiments for each discussed SL algorithm were provided, highlighting their

characteristics when altering the corresponding hyperparameter values.

Acknowledgements

You have been nothing but good to me as a supervisor; yet, I see you more as a

mentor—Jan. Taking all your optimization courses has allowed me to evolve as a student

of mathematics, and I have thoroughly enjoyed working alongside you as a TA this final

autumn semester. Experiencing the fulfillment of holding my first pair of lectures was

indeed a joy! Thank you for all the guidance and professional growth you have given me

during my master’s studies.

Furthermore, I would like to extend my sincere gratitude to you, Troels, as my second

supervisor. With your commitment and persistence, you have challenged and assisted me

with shaping the structure of this master’s thesis, making it more coherent.

In the final days leading up to the completion of my master’s studies, my father has

helped motivate me, and his dedication to assisting me in correcting the final text has

been greatly appreciated.

Til slutt vil jeg uttrykke min takknemlighet til min kjære gruppe best̊aende av Hanna,

Maria og Tora. Jeg føler glede over å ha f̊att bli kjent med dere og alt vi har lært av

hverandre. Å ha f̊att dele denne tiden med dere har gjort meg til et bedre menneske!

Marius H. Naasen

Wednesday 8th May, 2024

Contents

1 Introduction 1

2 Fundamental Optimization Principles 4

2.0.1 Non-Linear Optimization . 4

2.0.2 Convex Optimization . 6

3 Foundations of Machine Learning (ML) 9

3.1 The Primary Subfields of ML . 9

3.1.1 Supervised Learning . 11

3.1.2 Unsupervised Learning . 15

3.1.3 Reinforcement Learning (RL) . 17

3.2 The ML Pipeline . 19

3.3 The No-Free-Lunch Theorems . 24

4 Optimization In Linear Regression 26

4.1 General Framework . 27

4.2 Maximum Likelihood Estimation (MLE) for Linear Regression 30

4.2.1 Maximum Likelihood Estimation (MLE) 30

4.2.2 Optimization Model . 31

4.2.3 Closed-Form Solution . 33

4.3 Maximum a Posteriori (MAP) for Linear Regression 37

4.3.1 Maximum a Posteriori (MAP) . 37

4.3.2 Optimization Model . 38

4.3.3 Closed-Form Solution . 42

5 Optimization In Support Vector Machines (SVM) 45

5.1 Rosenblatt’s Perceptron . 46

5.1.1 The McCulloch-Pitts Neuron . 46

5.1.2 Invention of the Perceptron . 47

5.2 Hard-Margin SVM . 48

i

5.3 Soft-Margin SVM . 56

5.3.1 Primal Formulation . 56

5.3.2 Dual Formulation . 58

5.4 Feature Mapping and Kernels . 64

5.4.1 Feature Mapping . 64

5.4.2 Kernel Functions and Kernels . 68

5.5 Kernel SVM . 70

6 Hyperparameter Optimization (HPO) 74

6.1 Optimization Model . 75

6.2 HPO Algorithms . 79

6.2.1 Grid Search . 79

6.2.2 Random Search . 80

7 Numerical Experiments 84

7.1 Datasets and Programming Setup . 84

7.1.1 Regression Datasets . 85

7.1.2 Classification Datasets . 87

7.1.3 Programming Setup . 88

7.2 SL Algorithms . 90

7.2.1 Linear Regression . 90

7.2.2 Soft-Margin SVM . 96

7.2.3 Kernel SVM . 100

8 Conclusion 105

Abbreviations and Notation 106

Bibliography 107

ii

List of Figures

3.1 The subfields of Artificial Intelligence (AI). 10

3.2 The subfields of Machine Learning (ML). 10

3.3 Illustrated is the conceptual ideas of Supervised Learning (SL) regarding

the task of image classification. Given an input image x(i) (depicted on

the left side), the SL model uses mapping f to predict the corresponding

label yi (depicted on the right side). 12

3.4 In the regression task (left), we are concerned with finding a mapping

that describes the relation between the independent and dependent vari-

able. The classification task (right) can be seen as finding a mapping that

separates the labels. 13

3.5 Images from the MNIST dataset. 14

3.6 The rows represent different datasets and the columns are different clus-

tering algorithms. This illustrates that the clustering algorithms have dif-

ferent use cases depending on the structure of the data. The last dataset

consists of points randomly distributed with no meaningful structure. . . 16

3.7 A change of basis has been performed and the two principal components

are indicated by the black arrows. The greater arrow indicates the first

principal component, as it captures the most variance of the data. 17

3.8 The iterative process between the agent and the environment. At iteration

step t, the agent receives a state St and a rewardRt. The agent then decides

an action At and the environment responds by giving a new state St+1 and

a reward Rt+1. 18

3.9 An overview of the ML pipeline. 20

3.10 AlgorithmA outperforms algorithmB on the first three problems, however,

when considering the entire problem space, their performance averages out

and we cannot conclude that one is better than the other given the entire

problem space. 25

iii

4.1 Shown is the labeled data point (x(i), yi), along with the corresponding

prediction ŷi. Within the established framework, ŷi models the true un-

derlying function f , but due to noise expressed as perturbation, the true

value yi is offset by some ϵ, and therefore, ŷi does not perfectly align with

the true value yi. 28

4.2 Shown are blue dots that represent data points. We have the independent

variable along the horizontal axis, and the dependent variable along the

vertical axis. Given some estimation method, the black line illustrates the

better model while the red lines depicts inferior models. 29

4.3 Depicted is a 2-dimensional Gaussian distribution with zero mean and a

covariance matrix equal to the identity matrix positively scaled by some

factor. In the n-dimensional case, we can imagine an n-dimensional hy-

persphere centred at the origin. w is then more likely to take on values

closer to center of the sphere. 40

5.1 The modified McCulloch-Pitts neuron with weights as introduced by Don-

ald Hebb. Given some binary stimuli I and by using fixed weights W, the

value ITW is calculated. This value is then used as input for the thresh-

old function fθ. The neuron then either fires a signal, indicated by 1, or

remains dormant, indicated by 0. 47

5.2 Consider the maximal margin hyperplane indicated by the dashed lines

and the hyperplane indicated by red. Both hyperplanes are separating the

training data. Note however that the hyperplane indicated by red has a

smaller margin and is at a higher risk of misclassifying on unseen data

points generated from the same distribution as the training data. 49

5.3 The support vectors account for the data points that lie at the margin (as

seen in the figure), or within the margin which corresponds to a positive ξi. 63

5.4 Depicted on the left-hand side are the labeled data points (x(i), yi) from a

binary classification dataset where x(i) ∈ R2. By using feature mapping,

specifically, applying the basis function ϕ to every data point x(i), we have

the transformed labeled data points illustrated on the right-hand side for

which a sufficient separating hyperplane can be obtained. 65

iv

6.1 Illustrated are the hyperparameter configurations evaluated by grid search

and random search within the same parameter space. The green distribu-

tion overlaid on the figures indicates model performance, with higher values

being better. The figure captures the concept that random search explores

more of the relevant parameter space, especially when hyperparameters

have a varying degree of importance with respect to model performance. 82

7.1 Depicted are the labeled data points of R1 before performing standardiza-

tion and a train-validation-test split of the dataset. The red line indicates

the true underlying function. 86

7.2 Depicted are the labeled data points of R2 before performing standardiza-

tion and a train-validation-test split of the dataset. The red curve indicates

the true underlying function. 86

7.3 Depicted are the labeled data points of Fisher’s Iris dataset after perform-

ing dimensionality reduction and standardization. 88

7.4 Depicted are the labeled data points of the two moons dataset after per-

forming standardization. 88

7.5 The use of MLE without feature mapping is demonstrated on datasets

R1-train and R1-val, resulting in MSE values of 0.43 and 0.80 respectively. 91

7.6 The use of MAP without feature mapping is demonstrated on datasets

R1-train and R1-val with a hyperparameter value of Ψ = 10−2. This results

in MSE values of 0.43 and 0.80 for the training and validation datasets

respectively. 92

7.7 The use of MAP without feature mapping is demonstrated on datasets

R1-train and R1-val with a hyperparameter value of Ψ = 102. This results

in MSE values of 0.62 and 1.13 for the training and validation datasets

respectively. 92

7.8 The use of MLE with feature mapping is demonstrated on datasets R1-train

and R1-val, resulting in MSE values of 0.40 and 0.94 respectively. 93

7.9 The use of MAP with feature mapping is demonstrated on datasets R1-train

and R1-val with a hyperparameter value of Ψ = 10−1. This results in MSE

values of 0.40 and 0.88 for the training and validation datasets respectively. 93

7.10 The use of MAP with feature mapping is demonstrated on datasets R1-train

and R1-val with a hyperparameter value of Ψ = 10. This results in MSE

values of 0.42 and 0.86 for the training and validation datasets respectively. 94

7.11 The use of MLE without feature mapping is demonstrated on datasets

R2-train and R2-val, resulting in MSE values of 0.93 and 1.14 respectively. 94

v

7.12 The use of MAP without feature mapping is demonstrated on datasets

R2-train and R2-val with a hyperparameter value of Ψ = 10−1. This results

in MSE values of 0.93 and 1.14 for the training and validation datasets

respectively. 95

7.13 The use of MLE with feature mapping is demonstrated on datasets R2-train

and R2-val, resulting in MSE values of 0.23 and 41.81 respectively. 95

7.14 The use of MAP with feature mapping is demonstrated on datasets R2-train

and R2-val with a hyperparameter value of Ψ = 10−2. This results in MSE

values of 0.25 and 11.68 for the training and validation datasets respectively. 96

7.15 The use of MAP with feature mapping is demonstrated on datasets R2-train

and R2-val with a hyperparameter value of Ψ = 10. This results in MSE

values of 0.29 and 0.40 for the training and validation datasets respectively. 96

7.16 The use of soft-margin Support Vector Machines (SVM) without feature

mapping demonstrated on the Iris training (left-hand side) and validation

(right-hand side) dataset with Γ = 1. This results in accuracy scores of 1

for both the training and validation datasets. 98

7.17 The use of soft-margin SVM without feature mapping demonstrated on

the two moons training (left-hand side) and validation (right-hand side)

dataset with Γ = 1. This results in accuracy scores of 0.85 and 0.83 for

the training and validation datasets respectively. 98

7.18 The use of soft-margin SVM with basis function ϕA1 demonstrated on

the two moons training (left-hand side) and validation (right-hand side)

dataset with Γ = 1. This results in accuracy scores of 0.85 and 0.83 for

the training and validation datasets respectively. 99

7.19 The use of soft-margin SVM with basis function ϕA2 demonstrated on

the two moons training (left-hand side) and validation (right-hand side)

dataset with Γ = 10−2. This results in accuracy scores of 0.90 and 0.90 for

the training and validation datasets respectively. 100

7.20 The use of soft-margin SVM with basis function ϕA2 demonstrated on

the two moons training (left-hand side) and validation (right-hand side)

dataset with Γ = 1. This results in accuracy scores of 0.92 and 0.91 for

the training and validation datasets respectively. 100

7.21 The use of Radial Basis Function (RBF) SVM demonstrated on the two

moons training (left-hand side) and validation (right-hand side) dataset

with Γ = 1 and γ = 10−1. This results in accuracy scores of 0.87 and 0.84

for the training and validation datasets respectively. 102

vi

7.22 The use of RBF SVM demonstrated on the two moons training (left-hand

side) and validation (right-hand side) dataset with Γ = 1 and γ = 10. This

results in accuracy scores of 0.93 and 0.93 for the training and validation

datasets respectively. 102

7.23 The use of RBF SVM demonstrated on the two moons training (left-hand

side) and validation (right-hand side) dataset with Γ = 1 and γ = 102. This

results in accuracy scores of 0.96 and 0.90 for the training and validation

datasets respectively. 103

7.24 A heat map of the optimal RBF SVM decision boundary with Γ = 1,

γ = 10−1 for the two moons dataset. Illustrated are some of the labeled

data points from the training dataset. 103

7.25 A heat map of the optimal RBF SVM decision boundary with Γ = 1,

γ = 10 for the two moons dataset. Illustrated are some of the labeled data

points from the training dataset. 104

7.26 A heat map of the optimal RBF SVM decision boundary with Γ = 1,

γ = 102 for the two moons dataset. Illustrated are some of the labeled

data points from the training dataset. 104

vii

List of Tables

4.1 Three well-established methods of regression analysis when incorporating

different prior distributions for w using the method of Maximum a Poste-

riori (MAP). 39

5.1 A table highlighting the differences between the McCulloch-Pitts neuron

and the perceptron algorithm. 48

7.1 Programming libraries with their corresponding version. 89

7.2 Parameter values used for the train test split function in [31]. 89

7.3 Parameter values used for the make regression function in [30]. 89

7.4 Parameter values used for the make moons function in [39]. 90

viii

Chapter 1

Introduction

Famously quoted by Tom M. Mitchell and perhaps the most well-known statement in the

field of Machine Learning (ML), it is often introduced to anyone who wishes to endeavor

into the field:

“A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P , if its performance at tasks

in T , as measured by P , improves with experience E.”

This encapsulates the learning process of ML, which concerns itself with computer

programs that can learn to perform tasks by themselves, without being explicitly told

how, often achieving a capability comparable to that of human level or even surpassing

it.

Adding further context, the focus of ML is to construct computer programs that go

beyond memorization, to a degree of understanding that grants generalization of a given

task. Using the terms by Mitchell, in working with task T , an ML program aims to

achieve an understanding of experience E to such an extent that it is capable of going

beyond and generalize to perform well on experiences not yet encountered.

The concept of learning may sound abstract and is typically associated with capa-

bilities of conscious living beings. It might seem unnatural for a deterministic machine,

operating and expressing itself in terms of 0 and 1, to possess learning capabilities. Nev-

ertheless, the deterministic nature of a machine and its expression in terms of 0 and 1

becomes a powerful advantage when coupled with the principles of optimization. At the

1

very heart of the learning process of a ML program lies the use of optimization. Being

a field of mathematics, optimization deals with finding the best possible solution to a

given problem. By (optimization) problem, we mean a problem we want to optimize.

An optimization problem can be framed into a mathematical model, commonly called an

optimization model. With this optimization model, we can apply mathematical theory

and optimization algorithms to obtain a solution.

As we will explore in this master’s thesis, the learning process can be formulated as an

optimization problem, henceforth, an optimization model may be constructed. Some of

these models have a closed-form solution, which allows for obtaining the optimal solution

immediately. On the other hand, some models have to be solved iteratively, with the use

of iterative methods, e.g. gradient descent. In adapting an iterative approach, we will

gradually approach a better and better solution. This gradual approach of improving

solutions in the optimization model is reflected in the computer program, as it gradually

learns and improves. This gradual improvement of a computer program, within the ML

context, is what we mean by a computer program learning.

Assuming familiarity with the fundamentals of optimization, we will explore the learn-

ing process in ML. More specifically, we will delve into the learning process within the

subfield called Supervised Learning (SL). Here, we are letting the ML program learn from

experience, in form of a dataset, with the goal of predicting the correct output given an

input. This can include tasks such as image classification, speech recognition and med-

ical diagnosis. Particular to the field of SL, as the ML program makes predictions, it

will conceptually be aided by an all-knowing supervisor or oracle. This allows the pro-

gram to realize if it is correct or wrong in its predictions, which allows for correction and

improvement.

Furthermore, in SL, two distinct types of problems are considered: regression and

classification. In regression problems, the goal is to predict a continuous output, often

represented by a real number. For instance, one might apply regression to predict house

prices based on various features describing the house, such as square footage, number of

bedrooms, and location. On the other hand, in classification problems, the objective is

to assign inputs to discrete categories or classes. For instance, classifying emails as spam

or non-spam is a common classification task.

With an understanding of the learning process, we also want to touch on the topic

of Hyperparameter Optimization (HPO). Much like an instrument, an ML algorithm has

different settings that can be tuned, depending on the needs and wants of the ML prac-

titioner. The specific setting of an algorithm is determined by the adjustable parameters

2

of the algorithm. We call these parameters hyperparameters. Depending on the given

task, different settings to the hyperparameters of a ML algorithm may yield finalized ML

programs that may differ quite in performance.

We begin in Chapter 2 by recalling concepts and results of optimization used through-

out the later chapters. Thereafter, we will provide an introduction to ML in Chapter 3,

which grants the context and understanding needed for the subsequent chapters. As SL

involves regression and classification problems, we will explore the respective algorithms:

linear regression in Chapter 4 and Support Vector Machines (SVM) in Chapter 5. With

a conceptual understanding of the algorithms for each problem, in Chapter 6, we will

delve into how we should tune such algorithms by inspecting their hyperparameters. We

will see that a significant challenge in the hyperparameter tuning problem is time, as

the training component is often time-consuming, especially when dealing with a large-

scale training dataset. In Chapter 7 we conduct numerical experiments regarding the

discussed SL algorithms. Our aim is to provide practical examples and investigations to

complement and solidify the theoretical framework discussed in the preceding chapters.

3

Chapter 2

Fundamental Optimization

Principles

This chapter aims to describe and formalize the optimization concepts discussed in the

subsequent chapters. Our focus is on providing a review, rather than an in-depth inves-

tigation, assuming familiarity with the content.

We will begin by presenting properties and statements related to non-linear optimiza-

tion. Furthermore, we consider theory from convex optimization.

2.0.1 Non-Linear Optimization

Suppose we have the optimization model given by

min f(x) (2.1)

s.t.

h1(x) = 0, . . . , hm(x) = 0,

g1(x) ≤ 0, . . . , gr(x) ≤ 0,

4

where f, hi, gj are continuously differentiable functions from Rn to R. With vector

notation, we write model (2.1) as

min f(x) (2.2)

s.t.

h(x) = 0,

g(x) ≤ 0,

where h : Rn −→ Rm and g : Rn −→ Rr are the functions

h = (h1, . . . , hm), g = (g1, . . . , gr).

Before considering the KKT conditions, we recall the definitions in [48], which defines

the Lagrangian function, regularity with respect to a feasible point x and the active set

for a point x.

Definition 2.1. ([48]).

The Lagrangian function L : R(n+m+r) −→ R with respect to optimization model (2.1)

is defined as

L(x,ω,α) = f(x) +
m∑
i=1

ωihi(x) +
r∑

j=1

αjgj(x), (2.3)

where ω ∈ Rm and α ∈ Rr.

Definition 2.2. ([48]).

A feasible vector x with respect to optimization model (2.1) is said to be regular if

the gradients of the equality constraints and the active inequality constraints are linearly

independent at x. We also say that x is regular in the case where there are no equality

constraints and all the inequality constraints are inactive at x.

Definition 2.3. ([48]). For any feasible point x, the index set of active inequality

constraints is denoted by

A(x) = {j | gj(x) = 0}. (2.4)

If j ∈ A(x), we say that the j-th constraint is active at x. For the contrary, we say

the j-th constraint is inactive at x.

5

Proposition 2.1. ([48], Part of Prop. 4.3.1 (Karush-Kuhn-Tucker Necessary Condi-

tions)).

Let x∗ be a local minimizer and assume that x∗ is regular. Then there exist unique

Lagrange multiplier vectors ω∗ = (ω∗
1, . . . , ω

∗
m), α

∗ = (α∗
1, . . . , α

∗
r), such that

DxL(x∗,ω∗,α∗) = 0T ,

α∗
j ≥ 0, j = 1, . . . , r,

α∗
j = 0, ∀ j /∈ A(x∗),

where A(x∗) is the active index set at the point x∗.

2.0.2 Convex Optimization

Before looking into properties of convex optimization, let us first review definitions and

useful properties of convex functions given in [48].

Definition 2.4. ([48], Appendix B).

Let S be a convex subset of Rn. A function f : S −→ R is called convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), ∀ x,y ∈ S, ∀ t ∈ [0, 1]. (2.5)

We call f strictly convex if the inequality in (2.5) is strict for all x,y ∈ S with

x ̸= y, and all t ∈ (0, 1).

Proposition 2.2. ([48], Part of Prop. B.4).

Let S be a convex subset of Rn and let f : Rn −→ R be twice continuously differentiable

over Rn. Consider the Hessian of f(x) denotes as Hf (x).

(i) If Hf (x) is positive semidefinite for all x ∈ S, then f is convex over S.

(ii) If Hf (x) is positive definite for all x ∈ S, then f is strictly convex over S.

(iii) If f(x) = xTQx, where Q is a symmetric (n, n)-matrix, then f is convex if and only

if Q is positive semidefinite. Furthermore, f is strictly convex if and only if Q is

positive definite.

6

Convex functions enjoy certain useful properties for describing a global minimizer, as

well as conditions for optimality. These properties are highlighted in Proposition 2.3 and

2.4.

Proposition 2.3. ([48], Part of Prop. 1.1.2).

If X is a convex subset of Rn and f : Rn −→ R is convex over X, then a local minimizer

of f over X is also a global minimizer of f over X. If in addition f is strictly convex

over X, then f has at most one global minimizer over X.

Proposition 2.4. ([48], Part of Prop. 1.1.3).

Let X be a convex set and let f : Rn −→ R be a convex function over X. If X is

open and f is continuously differentiable over X, then Df(x∗) = 0T is a necessary and

sufficient condition for a vector x∗ ∈ X to be a global minimizer of f over X.

If we have the special case where an optimization model has the characteristics of

a convex objective function along with linear inequality constraints, then, as stated in

[48], we can construct another optimization model. This constructed model will have the

same optimal value and has as optimal solutions the Lagrange multipliers of the former

model. The following proposition taken from [48] encapsulates this idea.

Proposition 2.5. ([48], Part of Prop. 4.4.2).

Consider the following. Let the primal model be defined as

min f(x) (2.6)

s.t.

aT
j x ≤ bj, j = 1, ..., r,

x ∈ X,

where aj ∈ Rn and bj ∈ R, f : Rn −→ R is a convex continuously differentiable

function, and X is a polyhedral.

With the corresponding dual function (refer to Definition 2.1) given by

L(α) = f(x) +
r∑

j=1

αj(a
T
j x− bj), (2.7)

7

the dual function defined by

q(α) = inf
x∈X

L(x,α), (2.8)

and the dual model defined as

max q(α) (2.9)

s.t.

α ≥ 0. (2.10)

(a) If the primal model (2.6) has an optimal solution, then the dual model (2.9) also has

an optimal solution and both corresponding optimal values are equal.

(b) Let A(x) denote the active index set, that is, A(x) = {j|aT
j x − bj = 0}. In order

for x∗ to be an optimal primal solution and α∗ to be an optimal dual solution, it is

necessary and sufficient that x∗ is primal feasible, α∗ ≥ 0, α∗
j = 0 for all j /∈ A(x∗),

and

x∗ ∈ argmin
x∈X

L(x,α∗). (2.11)

Proposition 2.5 allows us to solve the dual optimization model (2.9) instead of the

primal optimization model (2.6). We then find that the optimal solution of the dual model

(2.9) corresponds to the Lagrange multipliers of the primal model (2.6). Furthermore, it

guarantees that the optimal values are equal.

8

Chapter 3

Foundations of Machine Learning

(ML)

This chapter aims to give a general introductory overview of the field of ML, along with

establishing a common vocabulary and some notation. Based on this, in the following

chapters we will delve into the various algorithms of Supervised Learning (SL).

We start by discussing what can be considered as the primary subfields of ML. Then

we move on to the general framework the ML practitioner operates in, namely, the so-

called ML pipeline. We conclude this chapter with the no-free-lunch theorems, which

gives confidence in the argument of the need in exploring and inventing a large variety of

ML algorithms.

3.1 The Primary Subfields of ML

As introduced in [71], ML is one of the major subfields of the much broader field called

AI (see Figure 3.1). In [57], it is further explained that AI is the ability for a digital

computer or computer-controlled robot to perform tasks, commonly associated with in-

telligent beings. AI is frequently applied to the project of developing systems endowed

with the intellectual processes characteristic of humans, such as the ability to reason,

discover meaning, generalize or learn from past experience.

9

Figure 3.1: The subfields of AI.

Figure (taken from [71]).

As mentioned in [21], the goal of ML is to create computer programs that are capable

of imitating the human learning experience, gradually improving over time. Furthermore,

[50] shares the concept that the computer learns without being explicitly programmed.

Imagine the task of teaching a computer to recognize pictures of different people. A

trivial task for the human mind, but challenging to describe the process to a computer.

Other tasks such as audio recognition, autonomous vehicles and chat bots share the same

complications as it would be difficult to describe the task or write sufficient computer

code. Instead of dealing with the cumbersome task of explicitly instructing the computer

which can be time-consuming or practically impossible, ML algorithms opt to learn by

themselves from data, experience or both.

The ML field is traditionally dissected into three main fields: SL, unsupervised learn-

ing and Reinforcement Learning (RL) (see Figure 3.2).

Figure 3.2: The subfields of ML.

Figure (modified and taken from [71]).

In the following, we describe these three fields in more detail.

10

3.1.1 Supervised Learning

Adapting the naming in [65], we have that Supervised Learning (SL) applies super-

vised algorithms to learn a function mapping

f : Rn −→ R (3.1)

where input x = (x1, . . . , xn) is called the independent variable and output y is

called the dependent variable. The domain and co-domain of this mapping may vary.

As mentioned in [70], it is common for the independent and dependent variable to be

from a vector space, but this is not strictly necessary as it is also common to have them

as matrices or scalar values. The variability in the domain and co-domain depends on

the specific SL task under consideration which will be further discussed in this section.

If the dependent variable is a vector, we represent it using bold symbol y. However, if

the dependent variable is a scalar or a categorical value (see definition below) we use the

non-bold symbol y.

In learning the mapping f , a SL algorithm will utilize a dataset of input-output pairs

DSL = {(x(i), yi}Ni=1 (3.2)

whereN is the number of (x(i), yi) pairs inDSL. Since there is no standard formulation,

we will use our own terminology by defining DSL as a dataset. With respect to dataset

DSL, we call x
(i) a data point, yi a target and the pair (x(i), yi) a labeled data point.

As stated in [70], depending on the dataset, the data x(i) and yi may represent complex

structure such as sentences, images, videos, sound recordings, etc. If this is the case, we

have to perform data transformations to turn the data into a more manageable format

for the SL algorithms e.g. vectors, matrices and scalars (see the data processing step in

the SL pipeline in Section 3.2). Further influenced by the dataset, if x(i) is a vector, its

coefficients can be the representations of concrete ideas, such as height, weight, income

etc. In [70], these representations making up the coefficients of the independent variable

are called features. Just like the independent variable, the dependent variable can in

principle be any type of object.

For y, we distinguish between two important cases. In adapting the naming and

description in [70], if y is a categorical variable, then

y ∈ C = {ν1, ν2, . . . , νk} (3.3)

11

where C represents a finite set of elements νj called labels or classes. From a statistics

view, every νj are from a finite parameter space or outcome space Ω. Examples of labels

for the categorical case are the months of a year with C = {January, . . . , December} or

labels representing means of transport with C = {Car, Bike, Bus}. When y is a categorical

variable, the task is referred to as a classification task. If the dependent variable y take

on continuous values, we call y a continuous variable and the task is referred to as a

regression task. We will refer to mapping f (see Equation (3.1)) in the classification and

regression task as a decision boundary and a regression line or regression curve

respectively.

As stated in [53] and [52], the goal of a SL algorithm is to have the algorithm output,

that is, the mapping, in ML terms called the model, have generalizing capabilities with

respect to the dataset. By generalizing capabilities, we mean that the model is able to

sufficiently predict on a different unseen dataset. It will be more clear what we mean by

sufficient in Chapter 4 and 5. Generalization is desired for the ML models due to the pre-

diction concept described in [44]. The following is a reworded formulation. Consider the

case where after we applied a SL algorithm on a dataset, that we observe a new data point

x̂ not found in the dataset, but assumed to be generated by the same unknown process

that generated dataset DSL. Using the model given by the SL algorithm, we would then

like the prediction ŷ(x̂) corresponding to x̂ to be accurate by some measure, thus making

the model fit for predicting on data not yet seen. As [44] highlights, in SL, our interest

is in describing ŷ conditioned on knowing x̂. From a probabilistic modelling perspective,

we are therefore concerned primarily with the conditional distribution P (ŷ|x̂,DSL), which

models the probability of ŷ being the output, given the test data point x̂ and the dataset

DSL.

Figure 3.3: Illustrated is the conceptual ideas of SL regarding the task of image classifi-
cation. Given an input image x(i) (depicted on the left side), the SL model uses mapping
f to predict the corresponding label yi (depicted on the right side).

Figure (modified and taken from [66] and [81]).

12

From a visual standpoint, in the regression task, our objective is to identify a mapping

that describes the relationship between the independent and dependent variables. On the

left-hand side of Figure 3.4, the blue points represent labeled data points (x(i), yi) from a

dataset DSL. The black line depicts the mapping. In the context of the classification task,

our goal is to establish a mapping that effectively separates the data points x(i) based on

their corresponding labels yi. Shown on the right-hand side of Figure 3.4, we observe blue

and red points, each denoting data points x(i) associated with two distinct labels. The

mapping, represented by the black line, effectively separates the points according to their

color, indicating the differentiation of data points x(i) according to their corresponding

labels yi.

Figure 3.4: In the regression task (left), we are concerned with finding a mapping that
describes the relation between the independent and dependent variable. The classification
task (right) can be seen as finding a mapping that separates the labels.

Figure (taken form [42]).

We will now consider the following example which illustrates that there are multiple

ways to represent the independent and dependent variable given a dataset DSL.

13

Example 3.1. The MNIST Dataset

Figure 3.5: Images from the MNIST dataset.

Figure (taken from [3]).

As mentioned in [3], widely considered as the ’hello world’ dataset of ML, the

MNIST dataset consists of a total of 70′000 grayscale images of numbers from zero

to nine. Each image is 28× 28 pixels in size. Each image in the dataset is labeled

with its corresponding number. The usual SL task is then to apply algorithms

to the MNIST dataset with the goal of obtaining a model that can adequately

classify an image to its corresponding number it is depicting. We will explore

how the independent and dependent variables can be represented. The following

representations discussed are widely known.

The input images, being of size 28 × 28, result in a total of 784 features

describing an image. As grayscale images have a single color channel, each pixel

has a value ranging from 0 to 255, where 0 represents a completely black pixel,

255 a completely white pixel, and values in-between variations of gray.

One way to represent the images is to concatenate each grayscale value correspond-

ing to a pixel of an image into a vector with 784 entries, making the i-th image x(i)

a 784-dimensional vector. Alternatively, another way to represent the independent

variable is not to concatenate grayscale-pixel values into a vector but to store them

in a 28× 28 matrix, leaving the i-th image x(i) as a 28× 28 matrix.

Considering the dependent variable y, the most natural way to represent the de-

picting number corresponding to an image is as a value from C = {0, ..., 9}. With

this, we see that y is a categorical variable. Another common representation is

using one-hot encodings, described in [51]. For the i-th image, we would then have

a vector yi with the number of entries corresponding to the number of possible

14

number depictions, in our case, a 10-dimensional vector. A vector yi will then

consist of all zeros, except for a value of 1 at the row corresponding to the number

depicted by x(i).

3.1.2 Unsupervised Learning

Unsupervised learning is the part of ML that utilizes algorithms for various tasks such

as analysis and clustering of unlabeled datasets, as stated in [20]. Being an unlabeled

dataset implies that we consider the SL dataset structure given by (3.2), only that there

is no corresponding output yi for each input x(i). As defined in [70], we consider the

unlabeled dataset given by

DUL = {x(i)}Ni=1 (3.4)

where N is the number of elements in DUL. For a description of x(i), see Section 3.1.1.

According to [22], unsupervised learning allows models to act on the given dataset

without any supervision. There is no training dataset nor supervisor that are telling the

models what is correct and what is wrong. In the words of [70]:

”unlike SL, we are not told what the desired output is for each input”.

Further stated from [70]:

”The goal [of unsupervised learning] is to find ’interesting patterns’ in the

data”.

The goal of unsupervised learning is not to learn a mapping to predict an appropriate

output given an input as seen in the SL case, instead the focus is on discovering ’interesting

patterns’ in the data. This search for uncovering structures in the data is referred to as

knowledge discovery, as named in [70].

In [20], clustering and dimensionality reduction are considered as two important ap-

plications of unsupervised learning. We will now consider these two methods.

15

Clustering is the task of sort data into groups. We then want similar data points to

be in similar groups (clusters). The similarity is determined by the rule of the clustering

algorithm, which there are multiple of, as seen in Figure 3.6.

Figure 3.6: The rows represent different datasets and the columns are different cluster-
ing algorithms. This illustrates that the clustering algorithms have different use cases
depending on the structure of the data. The last dataset consists of points randomly
distributed with no meaningful structure.

Figure (taken from [23]).

Described in [20], dimensionality reduction is a useful tool to reduce the dimension

of high-dimensional data while preserving the integrity of the dataset as much as possi-

ble. To explain the dataset’s integrity, we consider Principal Component Analysis

(PCA), which is an often sought-out dimensionality reduction algorithm. In [20], we

have the following explanation of the Principal Component Analysis (PCA) procedure

which we will now describe. Assuming our data points x(i) reside in a coordinate system,

we start by performing a change of basis to these data points. In the new coordinate

system, the first principal component is the direction that maximizes the variance of the

data points, the second principal component is the direction that secondly maximizes

the variance, and so on. Through the right change of basis, these principal components

will be orthogonal to each other (see Figure 3.7). By starting to discard the principal

components with the least variance describing the data points, we essentially reduce the

16

dimensions and compress the data. This is done while preserving the integrity of the data

by removing the least important dimensions with respect to the variance of the data.

Figure 3.7: A change of basis has been performed and the two principal components are
indicated by the black arrows. The greater arrow indicates the first principal component,
as it captures the most variance of the data.

Figure (taken from [7]).

Listed in [6] are reasons for considering dimensionality reduction. Notable is the

removal of redundant features. Decreasing the number of features can enhance compu-

tational time by working with a more compressed dataset. Furthermore, a reduction in

features opens up the possibility for visualization of higher dimensional data in dimensions

such as two or three dimensions.

3.1.3 Reinforcement Learning (RL)

The third subfield of ML is Reinforcement Learning (RL). In [34], they characterize

RL as the science of decision making, [33] adds:

17

”RL is a feedback-based ML technique in which an agent learns to behave

in an environment by performing actions and seeing the results of actions. For

each good action, the agent gets positive feedback, and for each bad action,

the agent gets negative feedback.”

The term agent refers to the decision-making entity of interest in RL. An RL al-

gorithm serves as the mechanism that enables the agent to learn from its experiences.

The agent is the output of the RL algorithm, representing the accumulated results of

the learning process. The agent behaves in a way as to maximize its positive feedback,

known as reward in RL terminology.

Given an input state, by state we mean an object describing the current state the

environment is in, the trained agent will output the action it deems optimal based on

its training experiences and past rewards. The environment, encompassing everything

beyond the agent’s control, responds by providing a new state and a reward based on the

agent’s action.

Figure 3.8: The iterative process between the agent and the environment. At iteration
step t, the agent receives a state St and a reward Rt. The agent then decides an action
At and the environment responds by giving a new state St+1 and a reward Rt+1.

Figure (taken from [33]).

RL, therefore, considers itself with a back-and-forth play between the agent and the

environment. In [49] the contrast between RL and SL is highlighted. Unlike a SL algo-

rithm, a RL algorithm has no available labeled dataset with optimal outputs to guide its

learning process. The RL algorithm must discover the optimal outputs through trial and

error by actively engaging with the environment.

18

To make the agent-environment relationship more clear, we will consider the RL model

AlphaZero. As described in [35], AlphaZero is a computer program designed using RL

to play the board games chess, Go and Shogi. Taking chess as an example, the agent

takes as input a board configuration and outputs the move to make. In this context,

the opponent acts as the environment. Analogous conclusions as stated by [49] when

applying RL to the board game backgammon, are also applicable when applying RL in

the game of chess. A single chess game involves a dozens of moves, and it is only at

the end of the game that the reward, in the form of a win or a loss, is obtained. The

reward must then be appropriately propagated to all of the moves that led to the game’s

conclusion, even though some moves will have been good moves, while others less so.

In this master’s thesis, the description of SL has been emphasized compared to un-

supervised learning and RL. This emphasis is due to our focus will be on optimization

within the context of SL algorithms. In the next section, we will look into concepts of the

ML pipeline. The ML pipeline represents the standard framework that a ML practitioner

operates within. We will consider steps of the ML pipeline, starting with data processing

and extending all the way to the final step involving the finalization of a ML model.

3.2 The ML Pipeline

Important for the process of creating ML models is the ML pipeline. Rephrasing the

description in [25], the ML pipeline is described as a way to automate the workflow of

the ML practitioner. Note that the steps of the workflow may be defined differently

depending on the author. Thus, we have divided the workflow into four steps, data

processing, model training, model evaluation, and model deployment. For the model

training and model evaluation steps we will adapt a more intuitive explanation of the

processes in order to understand the relation to the ML pipeline as a whole. For a more

in-depth analysis of these two steps, refer to Chapter 6. Further mentioned in [25] is that

the ML pipeline consists of having these steps automated by for example code. The ML

pipeline and its corresponding workflow steps can be seen in Figure 3.9.

An imaginative analogy in [24] describes the ML pipeline like an assembly line in a

manufacturing plant. The product goes through various stages along the assembly line,

and at the end, we have the final product.

There may be differences in the workflow steps of the ML pipeline depending on

whether we are considering the SL, RL or the unsupervised learning setting. In our

19

explanation, we will therefore consider the workflow steps of the ML pipeline in the case

of SL, we will call this the SL pipeline.

Figure 3.9: An overview of the ML pipeline.

Figure (modified and taken from [25]).

Data processing consists of preparing the data for the SL algorithms. Assume

we have some gathered data (which can be seen as a data extraction step in a more

comprehensive pipeline description) from some data organization or database which we

want to use for producing SL models. Before using this data, we need to perform data

processing, that is, data cleaning and transformations, which we will now explain.

In [64] they consider various data cleaning processes. The removal of corrupted data

may be necessary if we encounter data corruption, which can be due to reasons such as

hardware failure, software failure, file format incompatibility, data transmission errors,

human errors, etc. Handling missing values is necessary when there are data points that

have only been partially recorded or when parts of a data point have been corrupted.

This is due to many SL algorithms cannot handle missing values. There is a wide variety

of techniques; the most straightforward ones simply remove the data points with missing

values or calculate and insert the mean or the median of the missing value with respect

to the complete data points. For further data cleaning processes, we refer to [8].

The process of data transformation as seen in [2] is about transforming data into a

format that is readable for SL models. The transformation method called vectorization

is the process of transforming the contents from the dataset DSL into vectors or matri-

ces which are more suitable for the SL algorithms, compared to data in video or image

formats. Another transformation method considers the encoding of non-numerical data

such as going from categorical data or text data into numerical data. There are also more

optional steps; [20] mentions performing dimensionality reduction (refer to the method of

20

PCA in Subsection 3.1.2) and [13] considers standardization of the data. Standardization

is the process of transforming either x(i), yi, or both, within the dataset DSL. Assum-

ing the data points x(i) are vectors, standardization of the data points consists of first

calculating the sample mean and sample variance with respect to all data points in DSL.

Thereafter, for each data point, we subtract the calculated sample mean and divide by

the sample variance. As [13] states, our data points are now transformed such that there

is a mean of 0 and standard deviation of 1. Both processes of dimensionality reduction

and standardization have the goal of improving the model performance.

We now consider the model training step. During model training, it is common

practice to not let the model train on the whole dataset DSL, but a subset called DSL-train.

Well-known, as seen in [12] is the use of training-validation-test split which splits

the whole dataset DSL into a training dataset DSL-train, a validation dataset DSL-val, and

a test dataset DSL-test, with the properties that the three sets are mutually disjoint and

the union of the three datasets is equal to DSL. Such a splitting is done to perform both

model training and evaluation, where the two latter sets, DSL-val and DSL-test are used in

the model evaluation step of the SL pipeline.

As described in [26], the objective of model training is to learn the mapping f (See

Equation (3.1)) given dataset DSL-train. This process can be framed as an optimization

model where we optimize the training parameters w corresponding to mapping f .

Depending on the chosen SL algorithm, the mapping f , or equivalently, the model output

ŷ(w,x) may differ e.g. for linear regression we have ŷ(w,x) = wTx (see Chapter 4).

We begin by considering the objective function, commonly called the loss function

in ML. As highlighted in [72], the loss function is usually constructed in a way such that

it in some aspect captures how well the model fits the data, by comparing the predicted

model output ŷi(w,x
(i)) with the true value yi. A loss function for model training is

usually constructed such that it considers each labeled data point (x(i), yi) from DSL-train.

To mathematically convey the description in [72], let htrain be a given comparison function

for model training that takes the predicted value ŷi(w,x
(i)) and the true value yi, e.g.

for the regression task it is common to see

htrain(ŷi(w,x
(i)), yi) = (ŷi(w,x

(i))− yi)
2. (3.5)

The general form of Ltrain is then given by

Ltrain(w) =
∑

(x,y)∈DSL-train

htrain(ŷ(w,x), y). (3.6)

21

Model training refers to the process of solving the following optimization model:

min
w∈Rn

Ltrain(w). (3.7)

Models do not only possess training parameters, but also hyperparameters. Hyper-

parameters are different from training parameters in that they are fixed parameters chosen

before initiating model training. They can be seen as configurations of the settings of a

SL algorithm, thus giving rise to models possessing different hyperparameter config-

urations. Hyperparameters can be real-valued, discrete or categorical values depending

on the SL algorithm, [11] presents hyperparameter examples such as kernel functions and

regularization-parameters which will become more familiar in Chapter 4 and 5. Models

with different hyperparameter configurations, will in general perform differently, which is

why the next SL pipeline stage is concerned with selecting the best model among trained

models with different hyperparameter configurations.

Model evaluation is performed after model training and can also be framed as an

optimization model. During model training, it is common to train multiple models, using

different algorithms, and different hyperparameter configurations. Say M = {1 . . . , k} is

the set containing the indices of k trained models with mi being model i and w(i) being

the corresponding training parameters after model training. In the model evaluation step

we want to find the models in M that are performing best with respect to a validation

loss function Lval(w) and the validation dataset DSL-val. The validation loss function

Lval(w) and the corresponding validation comparison function hval is conceptually the

same as Ltrain(w) and htrain respectively, though it is not uncommon to have hval be

defined differently than htrain. We have

Lval(w) =
∑

(x,y)∈DSL-val

hval(ŷ(w,x), y). (3.8)

The optimization model for model evaluation is defined as

min
i∈M

Lval(w
(i)). (3.9)

Assume index i∗ is the optimal solution to optimization model (3.9) with model mi∗

being the corresponding model. As described in [12], we can get an unbiased estimate

on how well the model is doing on unseen data by considering DSL-test. The process

of obtaining the estimate for mi∗ is done by considering Ltest and htest. These can be

22

constructed with a similar approach to that of Lval and hval. If no anomalies present

themselves when reviewing the estimate for model mi∗ , we select this as the final model.

Example 3.2. A Desert Analogy on Hyperparameters

Imagine having the task of driving through a sandy desert and available we have

different vehicle types to choose from along with different vehicle configurations

corresponding to the vehicle types. In this example, driving through the desert

represents the SL dataset or problem class. The choice of vehicle corresponds to

selecting a SL algorithm that suits the given problem. Just as different vehicle

types have a varying capability in handling a sandy terrain, different SL algorithms

have their distinct strengths and weaknesses when applied to different datasets

and problem classes.

In this example, the hyperparameters represent the different configurations

available for the driver to perform on a vehicle. Adjusting vehicle traits such as

engine power, gross vehicle weight, suspensions, tire type and tire pressure will

result in a vehicle which will likely perform differently compared to a vehicle with

a different configuration.

Just as the driver may experiment with different vehicle configurations to find

the best working vehicle setup, a ML practitioner adjusts the hyperparameters to

find the optimal configuration for their chosen algorithm. The practitioner will in

general try a variety of different algorithms along with different hyperparameter

configurations in order to identify the optimal model.

Model deployment is the final stage of the SL pipeline. Assume i∗ is the obtained

solution from (3.9) and that the corresponding model mi∗ shows no anomalies on the

test. Within the model deployment step, we wish to put model mi∗ into production.

This model will then be available for users, developers or systems such that they can

utilize the model to solve or as part of solving their respective tasks, as described in [63].

The process of model deployment can be a challenging task, but it concerns itself

more with business and practical difficulties rather than dealing with theoretical and

mathematical aspects and will therefore not be discussed further.

23

3.3 The No-Free-Lunch Theorems

An important concept to keep in mind when we start to consider optimization ML al-

gorithms in the following chapters are the no-free-lunch theorems of Wolpert and

Machready from their paper, No Free Lunch Theorems for Optimization [89].

The following consequential description of the no-free-lunch theorems can be found in

[67].

”The NFL [no-free-lunch theorems] stated that within certain constraints,

over the space of all possible problems, every optimization technique will

perform as well as every other one on average (including Random Search [see

chapter (6)]. That is, if there exists a set of problems P for which technique

A beats technique B by a certain amount, there also exists an equal-sized set

of problems P ∗ for which the opposite is true.”

As we have seen in the previous section when describing the ML pipeline, the model

training step consists in solving the underlying optimization model (3.7).

Following [54], we conclude that the no-free-lunch theorems will apply not only to

SL algorithms but also to ML algorithms, since optimization is the core of the learning

process.

In taking a pessimistic perspective on the statement from [67], it suggests that all

algorithms are equally bad, with no universal algorithm suitable for all types of problems.

However, this is not the conclusion we should draw from the no-free-lunch theorems. As

[67] continues:

”this is of considerable theoretical interest but, I think, of limited prac-

tical value, because the space of all possible problems likely includes many

extremely unusual and pathological problems which are rarely if ever seen in

practice.”

Problems encountered in practical situations often exhibit structures that can be

exploited. As stated in [59], if we have information about the type of problem we are

dealing with and can incorporate it into our algorithm as assumptions, it now has an

advantage over random guessing.

The implications of the no-free-lunch theorems for the field of ML are concluded in

the following quote from [70]:

24

”as a consequence of the no-free-lunch theorem, we need to develop many

different types of models [ML algorithms], to cover the wide variety of data

that occurs in the real world.”

With this, we recognize the need for a variety of algorithms, each with its own

strengths and weaknesses. It’s crucial to pay attention to the assumptions made when

considering different ML algorithms. These assumptions are often chosen to better solve

specific types of problems and form the backbone of what makes the algorithms come to

realization and perform as they do.

Figure 3.10: Algorithm A outperforms algorithm B on the first three problems, however,
when considering the entire problem space, their performance averages out and we cannot
conclude that one is better than the other given the entire problem space.

Figure (taken from [83]).

25

Chapter 4

Optimization In Linear Regression

In the field of mathematical statistics, [91] presents linear regression as one of the oldest

subjects, tracing its roots back approximately two centuries. Further description by [91]

includes the broader context of regression, describing it as a statistical method for in-

vestigating the relationships between dependent and independent variables. Specifically,

in the case of linear regression, we make the assumption that the connection between

the dependent variable and independent variable can be described by an underlying un-

known function. While linear regression is versatile enough to handle multiple dependent

variables, our discussion here focuses on the simplicity of a single dependent variable.

Thus, when referring to the established notation in Subsection 3.1.1, we have dependent

variable y ∈ R and independent variable x ∈ Rn. The underlying unknown function

establishes the relationship given by

y = f(x). (4.1)

Furthermore, with linear regression we assume that function f(x) is linear, yielding

the expression

y = wTx (4.2)

with vector w ∈ Rn being the training parameters (for definition, refer to Section 3.2)

with coefficients yet to be determined.

Recalling the general SL dataset (3.2), we consider the dataset given by

D = {x(i), yi}Ni=1, (4.3)

26

with data point x(i) ∈ Rn and target yi ∈ R.

As seen in [36], linear regression is applied to the regression task of ML. The objective

is to estimate the coefficients of the linear function (4.2), which can equivalently be

understood as to determine a straight line or surface that minimizes the distance between

predictions and actual output values. The estimation of the coefficients is dependent on

the estimation method applied.

In this chapter we will begin by introducing the general framework of linear regression.

With the given framework, we will delve into two established estimation methods, Maxi-

mum Likelihood Estimation (MLE) and Maximum a Posteriori (MAP) For a description

of kernels and the technique of feature mapping, see Section 5.4.

From [70], we draw inspiration from the following quote:

”Linear regression is the “work horse” of statistics and (supervised) ma-

chine learning. When augmented with kernels or other forms of basis function

expansion [feature mapping], it can model also non-linear relationships.”

4.1 General Framework

Assume that the data points in D are Independent and Identically Distributed (i.i.d).

That is, we assume that each data point x(i) has been drawn from the same probability

distribution along with assuming that x(i) are mutually independent for i = 1, . . . , N .

We will also make use of matrix notation

D = (X,Y) (4.4)

with vector Y = (y1, . . . , yN) and matrix X ∈ RN×n where row i corresponds to

(x(i))T .

As stated in the introduction, when forming the connection between the indepen-

dent and dependent variables, we assume the existence of an unknown underlying linear

function f , which establishes Equation (4.2). Building on this idea, [85] describes the

additional noise assumption (for a description of noisy data, see Section 5.3.1). With

this, we assume that each labeled data point (x(i), yi) in D has been perturbed by ϵi ∈ R

27

to some degree. We assume that the perturbation has a Gaussian distribution, that is,

ϵi ∼ N (0, σ2). As [85] highlights, this implies that for every target yi we have

yi ∼ N (wTx(i), σ2). (4.5)

Figure 4.1: Shown is the labeled data point (x(i), yi), along with the corresponding pre-
diction ŷi. Within the established framework, ŷi models the true underlying function f ,
but due to noise expressed as perturbation, the true value yi is offset by some ϵ, and
therefore, ŷi does not perfectly align with the true value yi.

Figure (taken from [74]).

There is also value in having a visual understanding of linear regression, as described

in [85]. Within our framework, linear regression can be intuitively understood as finding

the line, or surface, that best fits the dataset D, according to some chosen estimation

method. This idea is better explored by considering an example. In Figure 4.2, the red

lines indicate inferior models while the black line indicates a better approximation for

describing the underlying unknown function f , using some given estimation method. Our

focus is on determining the coefficients that define the best model based on the chosen

estimation method.

Assuming the relationship between the dependent and independent variables is de-

scribed by the linear function f , as seen in Equation (4.2), we will have a line or surface

constrained to pass through the origin due to f(0) = wT0. However, as stated in [70],

we can liberate the line or surface by augmenting both w and each data point x(i) by

considering the transformation denoted by ϕ : Rn → Rn+1. For a given data point

28

x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
n)T , we have the transformation

ϕ(x(i)) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
n , 1)

T .

By additionally adding a row to w, we have

w = (w1, w2, . . . , wn, b)
T ,

where b is simply yet another coefficient to be determined. Performing such a trans-

formation liberates the model from having to pass through the origin, providing greater

flexibility in capturing the underlying patterns in the data. This is an example of the

technique of feature mapping which is further discussed in Section 5.4.

Figure 4.2: Shown are blue dots that represent data points. We have the independent
variable along the horizontal axis, and the dependent variable along the vertical axis.
Given some estimation method, the black line illustrates the better model while the red
lines depicts inferior models.

Figure (modified and taken from [42]).

Given our framework, we are now ready to start introducing estimation methods,

namely, Maximum Likelihood Estimation (MLE) and Maximum a Posteriori (MAP).

These will be used to try to estimate the coefficients w belonging to the assumed true

underlying unknown function f . With a sufficient estimation of w, we will have succeeded

29

in describing the connection between the dependent and independent variables. As we

will see, at the core of both these estimation methods is the construction and solving of

an optimization model.

4.2 Maximum Likelihood Estimation (MLE) for Lin-

ear Regression

4.2.1 Maximum Likelihood Estimation (MLE)

From [16], we have the descriptive quote:

”In statistics, maximum likelihood estimation (MLE) is a method of es-

timating the parameters of an assumed probability distribution, given some

observed data. This is achieved by maximizing a likelihood function so that,

. . . the observed data is most probable. The point in the parameter space that

maximizes the likelihood function is called the maximum likelihood estimate.”

Definition 4.1 formalizes the ideas outlined in the previous quote. It consists of the

likelihood function definition in [73] and the likelihood and MLE definitions in [16].

Definition 4.1. ([73], [16]).

Let X1, X2, . . . , Xn be a random sample from a distribution with parameter θ from

parameter space Ω. Suppose that we have observed X1 = x1, X2 = x2, . . . , Xn = xn. If

Xi for i = 1, . . . , n are continuous, then the likelihood function is defined as

Θ(x1, x2, . . . , xn|θ) = F (x1, x2 . . . , xn|θ), (4.6)

where F is the joint Probability Density Function (pdf) of X1, X2, . . . , Xn. Given θ̂ ∈ Ω,

we say that Θ(x1, x2, . . . , xn|θ̂) is the likelihood of x given θ̂.

In Definition 4.1, we want to make it clear that the likelihood function (4.6) varies de-

pending on parameter θ, and not on the sampled data x1, . . . , xn. Note that each random

variable Xi has taken the observed value of xi for i = 1, . . . , n. As the observed values do

not change, they remain fixed. Moreover, θ varies because, as stated in Definition 4.1, it

30

represents the parameter corresponding to the distribution random variables X1, . . . , Xn

are sampled from. As the quote at the start of this subsection describes, we are inter-

ested in estimating the parameter θ that maximizes the likelihood of observing the data

x1, . . . , xn. Assuming θ∗ is the parameter that maximizes the likelihood function implies

that, given the observed data x1, . . . , xn, the distribution from which these are sampled

is most likely to have the parameter θ∗. The method of MLE can be expressed as the

following maximization model,

θ∗ = argmax
θ∈Ω

Θ(x1, x2, . . . , xn|θ). (4.7)

4.2.2 Optimization Model

We will now apply MLE to the linear regression framework discussed in Section 4.1. From

the general approach to MLE, seen in (4.7), we have the unconstrained optimization

problem given by

w∗ = arg max
w∈Rn

P (D|w). (4.8)

Recall from (4.5) that yi ∼ N (wTx(i), σ2). With respect to Definition 4.1, we have

that w acts as parameters and each target yi from D acts as the observed random sample

from distribution N (wTx, σ2). Optimal parameters w∗ represents the parameter values

that maximizes the likelihood of observing dataset D.

We will now follow the derivation outlined in [85]. Expanding the objective function

in (4.8) we get

arg max
w∈Rn

P (x(1), . . . ,x(N), y1, . . . , yN |w). (4.9)

By the chain rule of probability along with the i.i.d assumption, we can extract the

probability of y1, conditioned on x1 and w. From (4.9) we have

arg max
w∈Rn

P (y1|x(1), . . . ,x(N), y2, . . . , yN ,w)P (x(1), . . . ,x(N), y2, . . . , yN |w)

= arg max
w∈Rn

P (y1|x(1),w)P (x(1), . . . ,x(N), y2, . . . , yN |w). (4.10)

31

Moreover, by performing an identical unrolling procedure to (4.10) for y2, . . . , yn, we

get

arg max
w∈Rn

N∏
i=1

P (yi|x(i),w)P (x(1), . . . ,x(N)|w)

= arg min
w∈Rn

(
−

N∑
i=1

logP (yi|x(i),w)

)
, (4.11)

where the latter follows from the rules of the logarithm, minimizing instead of maxi-

mizing and discarding P (x(1), ...,x(N)|w), since x(i) is considered observed, and therefore

independent of the training parameters w.

Continuing, we need an expression for substituting P (yi|x(i),w). With yi for i =

1, . . . , N being drawn from a Gaussian distribution, by (4.5), the pdf for yi for i = 1, . . . , N

is thus given by

P (η|x,w) =
1

σ
√
2π
e
− 1

2

(
η−wT x

σ

)2

. (4.12)

Further simplification of (4.11) yields

arg min
w∈Rn

(
−

N∑
i=1

log(
1

σ
√
2π
e−

1
2
(
yi−wT x(i)

σ
)2)

)
from substituting in (4.12),

= arg min
w∈Rn

(
−

N∑
i=1

log(
1

σ
√
2π

) +
N∑
i=1

1

2
(
yi −wTx(i)

σ
)2
)

by distributing the logarithm,

= arg min
w∈Rn

N∑
i=1

(yi −wTx)2 by discarding the constants,

= arg min
w∈Rn

1

N

N∑
i=1

(yi −wTx)2 by dividing by N. (4.13)

The objective function in (4.13) represents the mean squared difference between the

true value and the predicted value. This objective function formulation is commonly

known as the Mean Squared Error (MSE).

With the simplified optimization model given by (4.13), we are now in a position

where we can more easily describe its properties, which will give rise to the closed-form

solution.

32

4.2.3 Closed-Form Solution

Consider the equivalent formulation of (4.13) using matrix notation as defined in (4.4).

Using || · ||2 to denote the Euclidean distance we have

arg min
w∈Rn

1

N
||Y −Xw||22 (4.14)

The optimization model in (4.14) represents an unconstrained convex optimization

model. Moreover, under certain conditions, there exists a closed-form solution with a

uniquely determined solution w∗. Proposition 4.1 is useful for proving this statement.

Given that the proposition is originally an exercise in [45], we have included a proof.

Since the validity of statements (i) and (ii) in Proposition 4.1 is apparent, our focus lies

on proving statement (iii).

Proposition 4.1. ([45]).

Let matrix B ∈ Rn×k be given and let matrix A = BBT .

Then the following holds:

• (i): A is symmetric.

• (ii): A is positive semidefinite.

• (iii): A is positive definite if and only if B has full row rank.

Proof. (iii) : Assume A is positive definite, that is,

xTAx > 0 ∀x ∈ Rn \ {0}. (4.15)

Replacing A = BBT in (4.15) we have

0 < xTBBTx = (BTx)T (BTx) ∀x ∈ Rn \ {0}. (4.16)

From (4.16) it must be that BTx ̸= 0. Assuming this is not the case, that is, BT x̂ = 0

for some x̂ ∈ Rn \ {0}, it would contradict (4.16). With this fact along with (4.16) we

have

BTx ̸= 0 ∀x ∈ Rn \ {0}. (4.17)

33

Denoting BT = (β1 . . .βn) where vector βi is the i-th row of B, we can write (4.17)

as

x1β1 + . . .+ xnβn ̸= 0 ∀x ∈ Rn \ {0}. (4.18)

No non-trivial solution exists, that is, {β1, . . . ,βn} form a linearly independent set

and full row rank of B follows.

Proving the other direction, assume B has full row rank, that is, {β1, . . . ,βn} form a

linearly independent set. With this assumption we have

BTx ̸= 0 ∀x ∈ Rn \ {0}. (4.19)

From (4.19), it must be for all x in Rn \ {0} that

0 < |BTx|22 = (BTx)T (BTx) = xTBBTx = xTAx, (4.20)

and the result follows.

We now present the closed-form solution. The following proposition is based on the

conclusive ideas in [85]. These are, however, presented with little reasoning. Since it

considers itself with optimization, we have decided to include a proof of the proposition

here.

Proposition 4.2. (Ordinary Least Squares Solution [85]).

Let

f(w) =
1

N
||Y −Xw||22 (4.21)

where X,Y are defined as in (4.4) and w ∈ Rn. It then follows that f is convex over Rn.

If in addition, X has full column rank, then f attains a unique global minimum at

w∗ = (XTX)−1XTY. (4.22)

34

Proof. To prove the convexity of f over Rn we will use Proposition 2.2 part (i) which

ensures that f is convex over Rn if the Hessian Hf (w) is positive semidefinite for all

w ∈ Rn.

Expanding and applying the rules of transposes to f we get

1

N
||Y −Xw||22 =

1

N
(Y −Xw)T (Y −Xw)

=
1

N
(YT −wTXT)(Y −Xw)

=
1

N
(YTY −YTXw −wTXTY +wTXTXw). (4.23)

By making use of the commutative property of the dot product in Euclidean space,

we can combine the second and third term in (4.23). We then have

1

N
(YTY − 2YTXw +wTXTXw). (4.24)

Taking the derivative of (4.24) we get

Dwf(w) =
2

N
(wTXTX−YTX). (4.25)

From (4.25), we have that the Hessian of f is given by

Hf (w) =
2

N
XTX. (4.26)

Applying Proposition 4.1 to XTX (with B = XT and BT = X), we have that XTX

is positive semidefinite. Thus, f is a convex function over Rn.

Assume now that X has full column rank. With f being convex over Rn, Proposition

2.4 ensures that Dwf(w) = 0T is a sufficient condition for optimality.

Equating the derivative in (4.25) to zero and making the appropriate rearrangement,

we have

wTXTX = YTX. (4.27)

35

By Proposition 4.1 and X having full column rank, it must be that XTX is positive

definite. Positive definiteness of XTX, implies the existence of its inverse. Transposing

(4.27), and then left-multiplying by the inverse of XTX, we have

w = (XTX)−1XTY. (4.28)

Equation (4.28) describes a local minimizer of our optimization model (4.14). Since

f is a convex function, by Proposition 2.3, we have that any local minimizer must also

be a global minimizer, hence, (4.28) describes a global minimizer. Furthermore, since the

Hessian of f (4.26) is positive definite the global minimizer obtained in (4.28) is uniquely

determined.

The method of applying MLE, which gives rise to the optimization model (4.14), is

also known as ordinary least squares. As described in [70], its name comes from the

fact that we minimize the sum of the squares of the differences between the true values

and the predicted values.

We want to close this section by mentioning that even though we have the closed-form

solution (4.28), it can be beneficial to reject the closed-form solution and find numerical

solutions to optimization model (4.13) instead. The main reason, as described in [85],

is due to computational cost of the closed-form solution (4.28). Potential issues are

the matrix multiplications and matrix inversion. As previously stated, Y ∈ RN and

X ∈ RN×n, where N describes the number of data points, and n the dimensionality of

each x(i). These matrix multiplications and inversions can therefore become costly as the

number or dimensionality of the data increases. These operations start to become time

consuming to calculate due to their complexity.

Furthermore, as discussed in [85], heuristics applied to the optimization model (4.13),

particularly the gradient descent algorithm, have been extensively tested. In the general

case, this algorithm converges to a local minimizer. Leveraging the convexity of the

optimization model (4.13), Proposition 2.3 ensures that any local minimizer is also a

global minimizer. Consequently, the gradient descent algorithm in many cases converges

to a global minimizer.

36

4.3 Maximum a Posteriori (MAP) for Linear Regres-

sion

4.3.1 Maximum a Posteriori (MAP)

Before introducing the general method of MAP, let us first consider Bayes’ theorem, as

described in [65].

Proposition 4.3. (Bayes’ Theorem [65]).

Let A1, . . . , Ak be a collection of mutually exclusive and exhaustive events with P (Ai) >

0 for i = 1, . . . , k. Then for any other event B for which P (B) > 0,

P (Aj|B) =
P (Aj, B)

P (B)
=

P (B|Aj)P (Aj)∑k
i=1 P (B|Ai)P (Ai)

, j = 1, . . . , k. (4.29)

We will now dissect each of the components of (4.29). We will refer to Aj and B as

our hypothesis and evidence respectively.

We call P (Aj|B) the posterior probability, or simply the posterior. This is the

probability of hypothesis Aj, when taking into consideration the observed evidence B.

The likelihood, which was already covered in Section 4.2 is given by P (B|Aj). In

this context, it can be interpreted as the probability of observing evidence B, given that

hypothesis Aj is true.

The prior probability, or prior, is given by P (Aj) and can be understood as the

initial belief or probability for hypothesis Aj, before taking evidence B into account.

The marginal likelihood is given by P (B). It can be interpreted as the probability

of observing evidence B, independent of any hypothesis. Alternatively, we can represent

the probability of the evidence by
∑k

i=1 P (B|Ai)P (Ai). With this, we can interpret the

probability of B in terms of considering all possible hypotheses. For each of the hypothe-

ses, we calculate the probability of seeing evidence B given the hypothesis. Summing

over all of the possible hypotheses, we have our probability of B.

In the context of MAP, we wish to find that hypothesis that maximizes the posterior,

given the evidence B. Denoting our hypothesis space by HS , we have

w∗ = arg max
A∈HS

P (A|B). (4.30)

37

4.3.2 Optimization Model

We will now be applying MAP to the framework discussed in Section 4.1. From the

general approach to MAP seen in (4.30), we have the unconstrained optimization problem

given by

w∗ = arg max
w∈Rn

P (w|D). (4.31)

Explaining in terms of hypothesis A and evidence B, as seen in Section 4.3.1, D acts as

the evidence, and parameter w acts as the hypothesis. The hypothesis space corresponds

to Rn. We then have the optimal parameters maximizing the posterior given by w∗.

From [85], we can make the following derivation. We start by applying Bayes’ theorem

(4.3) to expand the objective function of (4.31). Expressing our dataset using matrix

notation as defined in (4.4), we have, we have

arg max
w∈Rn

P (X,Y|w)P (w)

P (X,Y)
. (4.32)

As previously discussed in Section 4.3.1, the objective function in (4.32) is now ex-

pressed in terms of the likelihood, prior, and marginal likelihood. The crucial part is the

prior P (w), for which we lack a specified probability distribution. As explained in [85],

this presents an opportunity to incorporate our own subjective prior beliefs regarding

the probability distribution for w, before considering the observed dataset D. As further

stated in [85], this incorporation of belief allows individuals conducting the regression

analysis to infuse their prior knowledge, comprised of experience, expert advice, and

other factors, into the formulation of the prior distribution.

In the continued derivation in [85], it becomes necessary to decide on a prior for

P (w). One natural approach, as seen in [70], is to acknowledge a lack of prior knowledge

regarding the potential values of w. Instead, we should let the likelihood P (X,Y|w), i.e.,

the observed data guide our conclusions. By adopting this perspective, we state that no

particularw should have a higher likelihood of occurring than any other. Mathematically,

we have that for all w ∈ Rn, P (w) = α for some real α > 0. This corresponds to applying

38

a uniform distribution for w, that is,

w =


w1

w2

...

wn

 with wi ∼ Uniform(−∞,+∞). (4.33)

Applying the uniform distribution along with (4.32) gives us

arg max
w∈Rn

P (X,Y|w) · α
P (X,Y)

. (4.34)

Since both P (X,Y) and α are positive constants independent of w, they can be

discarded and we have

arg max
w∈Rn

P (X,Y|w). (4.35)

The optimization model represented by (4.35) is exactly the same as the MLE opti-

mization model discussed in Section 4.2. By assuming w being drawn from a uniform

distribution, we have reached the same optimization model. This is consistent with our

expectations, since we are not incorporating any prior belief about what values for w are

more probable than others. Essentially, our inference relies solely on the observed data,

as when using the method of MLE.

With this, the question arises, what happens if we use a different prior distribution

for P (w), that is, we do not assume the probability for w to be uniform, but allow some

values to be more likely than others? By using a non-uniform distribution we are saying

that we have beliefs that certain w values are more likely to occur than others. Assuming

different probability distributions for w does, in fact, yield different objective functions.

A shortened table summary from [70] when applying different priors can be found in

Table 4.1.

Likelihood Distribution Prior Distribution Name

Gaussian Uniform Least Squares
Gaussian Gaussian Ridge
Gaussian Laplace Lasso

Table 4.1: Three well-established methods of regression analysis when incorporating dif-
ferent prior distributions for w using the method of MAP.

39

Among the three priors found in Table 4.1, as done in [85], we will henceforth consider

w being drawn from a multivariate Gaussian distribution. The pdf for a t-dimensional

multivariate Gaussian distribution with mean µ and positive definite covariance matrix

Σ, as seen in [14], is given by

P (η|µ,Σ) =
1

(2π)
t
2det(Σ)

1
2

exp

(
− 1

2
(η − µ)TΣ−1(η − µ)

)
. (4.36)

For the Gaussian distribution corresponding to w, we assume a mean of 0, and a

covariance matrix given by τ 2I with τ 2 > 0 and I being the (n, n)-identity matrix. for w

we have

w ∼ N (0, τ 2I). (4.37)

The pdf corresponding to (4.37) is constructed using (4.36). We have

P (η|0, τ 2I) = 1

(2πτ 2)
n
2

exp

(
− 1

2τ 2
ηTη

)
. (4.38)

Figure 4.3: Depicted is a 2-dimensional Gaussian distribution with zero mean and a
covariance matrix equal to the identity matrix positively scaled by some factor. In the
n-dimensional case, we can imagine an n-dimensional hypersphere centred at the origin.
w is then more likely to take on values closer to center of the sphere.

Figure (taken from [18]).

We will now continue the derivation as seen in [85], although we will make it more

concise, as the derivational steps are similar to that of MLE.

40

In applying the chain rule of probability to optimization model (4.32) we have

arg max
w∈Rn

P (Y|X,w)P (X|w)P (w)

P (Y|X)P (X)
. (4.39)

We have that X is independent of w because X is part of the observed data collected

before considering w. Therefore, P (X|w) = P (X). Further simplifying (4.39), we have

arg max
w∈Rn

P (Y|X,w)P (w)

P (Y|X)
. (4.40)

Since P (Y|X) is a constant independent of w, and the logarithm is monotonically

increasing, we simplify (4.41) to

arg max
w∈Rn

logP (Y|X,w) + logP (w). (4.41)

Since each yi ∼ N (wTx(i), σ2) as seen in (4.5), we can use the matrix notation in (4.4)

to describe Y from a multivariate Gaussian distribution, that is,

Y ∼ N (Xw, σ2I). (4.42)

The pdf corresponding to (4.42) is constructed using (4.36). Note that the when

considering σ2I, we have (σ2I)−1 = 1
σ2 I and det(σ2I) = σ2n. We have that the pdf is

given by

P (η|Xw, σ2I) =
1

(2πσ2)
n
2

exp

(
− 1

2σ2
||η −Xw||22

)
. (4.43)

Using the pdfs (4.38) and (4.42) for w and Y respectively, we can substitute them

into (4.41). We have

arg max
w∈Rn

[
log

(
1

(2πσ2)
n
2

)
− 1

2σ2
||Y −Xw||22 + log

(
1

(2πτ 2)
n
2

)
− 1

2τ 2
wTw

]
. (4.44)

By discarding unnecessary constants in (4.44) we get

arg max
w∈Rn

(
− 1

2σ2
||Y −Xw||22 −

1

2τ 2
wTw

)
. (4.45)

41

Minimizing and defining ψ = σ2

Nτ2
for (4.45) results in

arg min
w∈Rn

1

N
||Y −Xw||22 + ψwTw. (4.46)

The optimization model derived in (4.46) is called ridge regression. The objective

function closely resembles the objective function found when using MLE in Section 4.2,

except for the additional term given by ψ||w||22. We follow the description of ψ||w||22 in

[79]. By introducing the prior belief for P (w) as a zero-mean Gaussian, we have built

in the assumption that w are more likely to take on values centred at the origin. This

assumption of w, can be understood as a penalization in the objective function of (4.46),

with the degree of penalization determined by ψ > 0. The further away w strays from

the origin, the more the objective function is penalized. We would then prefer to take a

smaller w to achieve a smaller penalty term.

From a statistics perspective, in [79], it is shown that with the suggested prior belief

for w, there is a decrease in the variance of the MAP estimator, that is, the optimal

solution of the optimization model (4.46). The decrease in variance comes from the prior

belief that the values of w are centered around the origin.

With the formulation given by (4.46), we will in the next section consider the closed-

form solution.

4.3.3 Closed-Form Solution

Applying the matrix notation seen in (4.4), optimization model (4.46) can be equivalently

formulated as

arg min
w∈Rn

||Y −Xw||22 +ΨwTw. (4.47)

We have purposefully left out the constant 1
N
. Doing so will not affect the optimization

model. Furthermore, we will substitute ψ = σ2

Nτ2
with the parameter Ψ where 0 < Ψ ∈ R.

In the context of SL, Ψ is a hyperparameter. We make these changes in order to reach

the same conclusions presented in [85].

In describing the corresponding closed-form solution for the optimization model (4.47),

like we did with in the presenting of the closed-form solution for MLE, we rely on the

42

conclusive statements from [85]. Additionally, these statements are presented without

proof. Since the discussion is relevant to optimization, we have decided to prove the

statement in the following proposition.

Proposition 4.4. (Ridge Regression Solution [85]).

Let

f(w) = ||Y −Xw||22 +ΨwTw, (4.48)

where X,Y are defined as in (4.4), w ∈ Rn and 0 < Ψ ∈ R. It then follows that f is

strictly convex over Rn and f attains a unique global minimum at

w∗ = (XTX+ΨI)−1XTY, (4.49)

where I is the (n, n)-identity matrix.

Proof. To prove f is strictly convex over Rn we will use Proposition 2.2 part (ii) which

ensures that f is strictly convex over Rn if the Hessian Hf (w) is positive definite for all

w ∈ Rn.

Taking the derivative of f we get

Dwf(w) = 2(wTXTX−YTX) + 2ΨwT . (4.50)

From (4.50), we have that the Hessian of f is given by

Hf (w) = 2XTX+ 2ΨI. (4.51)

From Proposition 4.1, we have that XTX is positive semidefinite, that is,

wTXTXw ≥ 0, ∀ w ∈ Rn. (4.52)

As Ψ > 0, we have

wT2ΨIw > 0, ∀ w ∈ Rn \ {0}, (4.53)

43

This implies that 2ΨI is positive definite by definition. The combination of (4.52) and

(4.53) implies that the Hessian in (4.51) is positive definite, which establishes that f is

strictly convex over Rn.

With f being convex over Rn, Proposition 2.4 ensures that Dwf(w) = 0T is a suffi-

cient condition for optimality. Equating the expression in (4.50) to zero and making the

appropriate rearrangement, we have

(XTX+ΨI)w = XTY. (4.54)

As stated by (4.52) and (4.53), XTX+ΨI is positive definite, hence, its inverse exists.

From (4.54), we get

w = (XTX+ΨI)−1XTY. (4.55)

Equation (4.55) describes the global minimizer of f . From Proposition 2.3, this min-

imizer is uniquely determined due to the strict convexity of f over Rn.

44

Chapter 5

Optimization In Support Vector

Machines (SVM)

Support Vector Machines (SVM) are a family of SL algorithms that were initially intro-

duced for the classification task of SL, as stated in [5]. In its most extensive form, the

SVM algorithm is capable of finding non-linear decision boundaries separating datasets

with multiple classes. Described in [56], the development of the SVM started in 1962

and was first published in 1964 by Vladimir Vapnik and Alexey Chervonenkis. Later

development of the SVM as stated in [5] gave rise to Support vector regression machines

which made the SL algorithm applicable for the regression task.

In this chapter, we will explore SVM with a focus on solving the classification task,

which was its initial purpose. Moreover we will focus on the binary classification task

because SVM for multiclass classification consists of breaking the multiclass classification

problem into smaller binary classification problems. Inspecting the binary classification

task will be sufficient in understanding SVM. From the generalized SL dataset (3.2) in

Chapter 3, we have that the generalized binary classification task considers the dataset

given by

D = {(x(i) ∈ Rn, yi ∈ C)}Ni=1, (5.1)

where the labels are given by C = {+1 − 1}. This is the dataset we will consider

throughout this chapter.

We will start this chapter by investigating the McCulloch-Pitts neuron and the per-

ceptron algorithm, which, described in [87] can both be seen as foundational work in

45

which the SVM is built upon. Further, we will investigate the hard-margin SVM which

assumes that the data are linearly separable. Following the definition in [1], we call D a

linearly separable dataset if and only if there exists z ∈ Rn and q ∈ R such that for all

i = 1, . . . , N we have

yi(z
Tx(i) + q) > 0. (5.2)

After the discussion of the hard-margin SVM we introduce the soft-margin SVM which

relaxes the linearly separable assumption of dataset D. Thereafter, we will consider the

dual formulation of the soft-margin SVM which is often referred to as the dual SVM.

Important to the dual SVM is its valuable characteristics which we will explore and

leverage by considering the concepts of feature mapping and kernels in the subsequent

sections. Doing so will lead us to the development of the kernel SVM.

5.1 Rosenblatt’s Perceptron

5.1.1 The McCulloch-Pitts Neuron

As mentioned in [32], the foundation for what would evolve into the perceptron was estab-

lished by Warren McCulloch and Walter Pitts in 1943. In their paper, A logical calculus

of the ideas immanent in nervous activity [68], they proposed a simplified mathematical

model of how neurons in the brain could be represented. Prominent in their paper is

showing that their proposed neuron is capable of modelling multiple logic gates such as

AND, OR, NOR as seen in [55]. Such a neuron is commonly known as a McCulloch-

Pitts neuron.

Adapting the idea from the biological neuron, the McCulloch-Pitts neuron either fires

or does not fire, the output is either 0 or 1. Adapting notation in [27], the output of

the neuron is determined by the binary input I ∈ Rn, which is an N -dimensional vector

with components taking on values of either 0 or 1, the weights W ∈ RN , the summation

function g(I) = ITW, and the threshold function fθ in [32] defined as

fθ(x) =

1 if ITW ≥ θ,

0 if ITW < θ,
(5.3)

46

where θ is the fixed threshold value. Note that in the McCulloch-Pitts paper, the

neuron had no weights, or rather, the weights were all fixed to 1. The idea of weights

were later introduced by Donald Hebb in 1949 as stated in [32]. We have that the

output of the McCulloch-Pitts neuron can be represented by the composite function

h(I) = fθ(g(I)) = fθ(I
TW).

Due to having a higher similarity with the perceptron, an illustration of the

McCulloch-Pitts neuron with weights can be seen in Figure 5.1.

Figure 5.1: The modified McCulloch-Pitts neuron with weights as introduced by Donald
Hebb. Given some binary stimuli I and by using fixed weights W, the value ITW is
calculated. This value is then used as input for the threshold function fθ. The neuron
then either fires a signal, indicated by 1, or remains dormant, indicated by 0.

Figure (taken from [27]).

With the McCulloch-Pitts neuron established, we may now continue to the framework

of the perceptron, which provides ideas and concepts important for the SVM.

5.1.2 Invention of the Perceptron

In the 1957 paper The Perceptron — A Perceiving and Recognizing Automaton [76],

the author Frank Rosenblatt proposed an SL algorithm for finding a separating deci-

sion boundary, that is, a separating hyperplane with respect to the binary classification

dataset (5.1), assuming that the data are linearly separable. The main component of the

perceptron is the McCulloch-Pitts neuron in order to represent the separating hyperplane.

An important component of the perceptron is that it has a learning algorithm in

order to update the weights by training on the data points in the dataset. A detailed

47

description of the learning algorithm is given in [87]. Summarized, the learning algorithm

goes through all data points x(i) until they all are classified correctly to the corresponding

target yi. If a data point is misclassified, the algorithm will adjust the hyperplane in order

to correctly classify the misclassified data point. The algorithm keeps going until all data

points are correctly classified and a separating hyperplane has been found. In [9], it is

guaranteed that if a binary classification dataset is linearly separable, then the learning

algorithm will eventually converge to a separating hyperplane.

Important to note is that although the converged hyperplane separates the data points,

in regards to the converged hyperplane, the perceptron algorithm has no criteria of good-

ness defined by a constructed measure. All it guarantees is that it separates a dataset

into two classes. We can understand the SVM as an extension of the perceptron in the

sense that the it actively seeks a hyperplane with respect to a defined measure. In the

next section we will delve into the consideration of such a measure when examining SVM.

McCulloch-Pitts Neuron Perceptron

Inputs
The original neuron implementation
processes only binary input data
(from [32]).

The perceptron allows for real-valued inputs.
In the sense of belonging to a larger network
of neurons, this allows the perceptron to take
into account the strength of the input.

Learning
Rule

The neuron does not involve weight
updates. The weights are fixed in
advance (from [32]).

The learning algorithm for the perceptron
proposed by Rosenblatt updates the
weights to minimize the misclassification
over a set of training examples (from [87]).

Learning
Capability

The neuron is a simple
mathematical model with no learning
capabilities. It is a static model used to
illustrate basic logical and
computational operations (from [87]).

The perceptron has the ability to learn
decision boundaries in order to classify
data into two classes. Its limitation is
that it assumes the data is linearly
separable and binary (from [87]).

Applications

The neuron is mainly used as a
theoretical model for
understanding basic concepts of
neural computation and logical
operations.

The perceptron has historically been used
for binary classification tasks where the
classes can be separated by a linear boundary.
It is a stepping stone in the development
of more sophisticated algorithms (from [87]).

Table 5.1: A table highlighting the differences between the McCulloch-Pitts neuron and
the perceptron algorithm.

5.2 Hard-Margin SVM

The hard-margin SVM is a variant within the SVM family that makes assumptions about

what an effective separating hyperplane should be. Formulating such assumptions about

48

the quality of a hyperplane enables the creation of a hierarchy of hyperplanes, provid-

ing insights into determining the optimal separating hyperplane. Naturally, this can be

formulated as an optimization model.

Consider the binary classification dataset D. For this section, we make the assumption

that the dataset is linearly separable, that is, there exists ẑ ∈ R and q̂ ∈ R such that for

all i = 1, . . . , N , the labeled data points (x(i), yi) in D satisfies Inequality (5.2).

From [86], we have that there is an infinite amount of such separating hyperplanes.

The question arises, how should we choose between the hyperplanes, that is, how do we

determine that one is better than another? The key observation is that we would like to

maximize the distance from the data points x(i) in D to the separating hyperplane, this

maximum distance being called the margin. Motivations for maximizing the margin is

given in [44], which builds on the underlying assumption that the data in D is generated

from some unknown distribution. Data from D along with unobserved data points not in

D but generated from the same distribution will then be distributed similarly, hopefully

with some sort of pattern. As explained in [86], a larger distance between the hyperplane

and the closest data point from D allows for a larger margin of error, where the model is

less likely to misclassify on unseen data points.

Figure 5.2: Consider the maximal margin hyperplane indicated by the dashed lines and
the hyperplane indicated by red. Both hyperplanes are separating the training data. Note
however that the hyperplane indicated by red has a smaller margin and is at a higher
risk of misclassifying on unseen data points generated from the same distribution as the
training data.

Figure (taken from [82]).

The following derivation to retrieve the hard-margin SVM optimization model is based

on [86]. We have decided to adapt the explanation of the derivation into our own words

49

while also formalizing certain parts from [86]. We do this because we believe that investi-

gating the derivation in detail will provide an understanding of how the SVM algorithm

works.

In order to effectively describe the margin of a hyperplane mathematically, we will

need equations to describe the distance from a hyperplane to an arbitrary data point.

Let w ∈ Rn and b ∈ R be given and consider the hyperplane defined by

H = {x ∈ Rn|wTx+ b = 0}.

Also, consider an arbitrary point x ∈ Rn with xp being its projection onto H, thus

satisfying wTxp + b = 0. Now define the difference d = x − xp. From [86], it follows

that d is parallel with w, that is, d = tw for some t ∈ R. Making the rearrangement

xp = x− d = x− tw we can derive that

wT (x− tw) + b = 0 by substituting for xp,

wTx+ b− twTw = 0 by expanding,

t =
wTx+ b

wTw
by solving for t,

d = (
wTx+ b

wTw
)w by right-multiplying with w.

Since we are interested in the distance and not the distance vector itself, we can take

the Euclidean norm of d. We then have

||d||2 =
√
(
wTx+ b

wTw
)wT (

wTx+ b

wTw
)w by Euclidean norm definition,

=

∣∣∣∣wTx+ b√
wTw

∣∣∣∣ by simplifying.

An equation describing a point and its distance to a hyperplane has been obtained

and we may now proceed to explicitly define the margin. We define the margin G(w, b)
mathematically as the distance from the hyperplane given by w and b to the closest data

point across both labels, that is,

G(w, b) = min
i∈{1,...,N}

∣∣∣∣wTx(i) + b

||w||2

∣∣∣∣. (5.4)

50

Maximizing (5.4) with respect to w and b gives us the hyperplane with the largest

margin. This results in the optimization model given by

max
w∈Rn,b∈R

G(w, b). (5.5)

In leaving the optimization model (5.5) unconstrained, observe that we can then move

the hyperplane arbitrarily far away to maximize the margin. By adding constraints,

specifically the inequalities describing the dataset D being linearly separable (5.2), we

can enforce the hyperplane to lie between the two classes. Alternatively, we can express

this as enforcing the data points to be on the correct side of the hyperplane. We have

max
w∈Rn,b∈R

(
min

i∈{1,...,N}

∣∣∣∣wTx(i) + b

||w||2

∣∣∣∣) (5.6)

s.t.

yi(w
Tx(i) + b) > 0 i = 1, . . . , N.

Since w is a constant with respect to the inner minimization, we can simplify the

objective function in (5.6) and we then have

max
w∈Rn,b∈R

1√
wTw

(
min

i∈{1,...,N}
|wTx(i) + b|

)
. (5.7)

s.t.

yi(w
Tx(i) + b) > 0 i = 1, . . . , N.

Further simplification is obtained by considering the hyperplane representation which

is not uniquely determined. We consider the following example to educate this idea.

Example 5.1. ([86]). Hyperplane Representation

Let w ∈ Rn, b ∈ R and k ∈ R \ {0} be given. Consider

H = {x ∈ Rn|wTx+ b = 0} (5.8)

and

Ĥ = {x ∈ Rn|k(wTx+ b) = k · 0}. (5.9)

Since H ⊆ Ĥ and Ĥ ⊆ H, we have H = Ĥ and the two hyperplane representations

51

represent the same hyperplane. Hyperplanes are therefore scale invariant and its

representation is not unique.

Assume that ŵ and b̂ satisfies the linearly separable constraints from (5.6) and let

x∗ be the data point that is closest to the hyperplane. We have

|ŵTx∗ + b̂| = t > 0. (5.10)

Since the hyperplane representation is not unique, we can change it with ŵ
t
and b̂

t
,

which corresponds to k = 1
t
in (5.9). With this new hyperplane representation we

have for x∗

|ŵ
t

T

x∗ +
b̂

t
| = 1. (5.11)

We can therefore, given the closest lying data point x∗ perform a change in hyper-

plane representation such that x∗ lies one unit away from the hyperplane, where

the unit is with respect to ŵT

t
.

Consider optimization model (5.7) and a feasible solution (ŵ, b̂). Suppose that for

some t > 0 we have

min
i∈{1...N}

|ŵTx(i) + b̂| = t. (5.12)

As outlined in Example 5.1, for Equation (5.12), we can make a change of hyperpa-

rameter representation such that

min
i∈{1...N}

|ŵ
t

T

x(i) +
b̂

t
| = 1. (5.13)

As this approach is applicable for any feasible solution of optimization model (5.7),

we can enforce the additional constraint given by

min
i∈{1...N}

|wTx(i) + b| = 1. (5.14)

With the constraint given by Equation (5.14), we can replace the inner minimization

of the objective function of (5.6) by the constant 1. The optimization model (5.7) can

52

now be represented by

minwTw (5.15)

s.t.

yi(w
Tx(i) + b) > 0 i = 1, . . . , N, (5.16)

min
i∈{1,...,N}

|wTx(i) + b| = 1, (5.17)

w ∈ Rn, b ∈ R,

where the minimization comes from observing that the square root function is mono-

tonically increasing. It turns out that we can replace the constraints in (5.15) with a new

set of constraints, thus giving rise to an optimization model which is often considered the

optimization model when addressing the hard-margin SVM. It is given by

minwTw (5.18)

s.t.

yi(w
Tx(i) + b) ≥ 1 i = 1, . . . , N,

w ∈ Rn, b ∈ R.
(5.19)

We can replace optimization model (5.15) with model (5.18) because any optimal

solution of the former is also an optimal solution of the latter and vice versa. A sketch of

the proof is outlined in [86]. We have therefore decided to include a formal portrayal of

the same proof here. For clarity, we first consider an auxiliary statement in Proposition

5.1 before proving the statement in Proposition 5.2.

Proposition 5.1. ([86]).

An optimal solution (w∗, b∗) for optimization model (5.15) is feasible for optimization

model (5.18), and conversely, an optimal solution for (5.18) is feasible for (5.15).

Proof. Assume (w∗, b∗) is an optimal solution of optimization model (5.15). Considering

Equation (5.17) we have

min
i∈{1,...,N}

|(w∗)Tx(i) + b∗| = 1. (5.20)

Let data point x∗ correspond to the global minimizer i∗ of (5.17). Furthermore, let

y∗ denote the target corresponding to x∗, that is, we have the labeled data point (x∗, y∗).

53

Multiplying (5.20) by |y∗| gives

|y∗||(w∗)Tx∗ + b∗| = |y∗| · 1. (5.21)

Moreover, since y∗ ∈ {+1,−1} and by applying the rules of absolute values it follows

from (5.21) that

|y∗((w∗)Tx∗ + b∗)| = 1. (5.22)

By (5.16) we have that y∗((w∗)Tx∗ + b∗) > 0. The absolute value sign in (5.22) can

therefore be discarded and it must be that

y∗((w∗)Tx∗ + b∗) = 1. (5.23)

Since x∗ is the global minimizer of (5.17), it must be that (5.19) holds and the point

(w∗, b∗) is feasible for optimization model (5.18).

In showing the converse, assume (w∗, b∗) is an optimal solution of optimization model

(5.18). Optimality implies feasibility and from (5.19) we have

yi((w
∗)Tx(i) + b∗) ≥ 1 i = 1, . . . , N. (5.24)

Inequality (5.24) implies Inequality (5.16). What remains to be shown is that Equa-

tion (5.17) holds for (w∗, b∗). Assume the contrary,

min
i∈{1,...,N}

|(w∗)Tx+ b∗| = α ̸= 1. (5.25)

We have two cases. Assume that α < 1. Consider the global minimizer i∗ of (5.25)

with the corresponding data point x∗. Let y∗ denote the target corresponding to x∗.

Multiplying of Equation (5.25) with |y∗|, we have

|y∗||(w∗)Tx∗ + b∗| = |y∗|α. (5.26)

Applying the rules of absolute values to (5.26) it must be that

|y∗((w∗)Tx∗ + b∗)| = α < 1. (5.27)

This however is contradicting Inequality (5.19) because α is strictly less than 1.

54

Now assume α > 1. Since the hyperplane representation is not unique, we can change

w∗ and b∗ by w∗

α
and b∗

α
respectively. Considering (5.25) with the new hyperplane repre-

sentation we will have

min
{1,...,N}

∣∣∣∣(w∗

α

)T

x(i) +
b∗

α

∣∣∣∣ = 1. (5.28)

The constraints given by (5.19) is satisfied for (w
∗

α
, b

∗

α
) since x∗ is the global minimizer

of (5.28). This means that (w
∗

α
, b

∗

α
) is feasible, but this contradicts the optimality of w∗,

b∗ since

(w∗)Tw∗ > (
w∗

α
)T

w∗

α
,

and the result follows.

In the following proposition we only prove one direction of the equivalence as the

other direction is proved analogously.

Proposition 5.2. ([86]).

The point (w∗, b∗) is optimal for optimization model (5.15) if and only if (w∗, b∗) is

optimal for optimization model (5.18).

Proof. Let (w∗, b∗) be an optimal solution of optimization model (5.15). Invoking Propo-

sition (5.1), it must be that (w∗, b∗) is feasible for model (5.18). In proceeding, assume

(w∗, b∗) is not optimal for model (5.18). This implies that there exists (ŵ, b̂) that is

optimal for model (5.18) and it must be that

((w∗)T)w∗ > ŵTw. (5.29)

Applying Proposition (5.1) to (ŵ, b̂), we have that (ŵ, b̂) is feasible for model (5.15).

This however contradicts the optimality of (w∗, b∗) with respect to model (5.15) due to

Inequality (5.29).

55

It is interesting that the optimization model (5.18) is a quadratic optimization problem

with linear constraints. We can then solve the hard-margin SVM optimization model with

commercially available quadratic programming solvers.

As described in [49], let (w∗, b∗) be the optimal solution corresponding to the hard-

margin SVM model (5.18). Given a test data point x̂, we can make predictions by looking

at the sign of

ŷ = (w∗)T x̂+ b∗. (5.30)

The sign of ŷ represents the side of the decision boundary (hyperplane) data point x̂

occupies. By considering the sign function given by

sign(x) =


1 if x ≥ 0,

0 if x = 0,

−1 if x < 0,

(5.31)

and applying it to ŷ, we can get the side of the decision boundary, and thus the

predicted class for test data point x̂.

Throughout this derivation of the SVM we have assumed that the data points in

dataset D are linearly separable. We will in the following section discard this assump-

tion and see how the SVM can be generalized to where the optimal hyperplane is not

necessarily separating all the data points, thus purposefully misclassifying certain data

points.

5.3 Soft-Margin SVM

5.3.1 Primal Formulation

Extending the idea of the hard-margin SVM is the work of Corinna Cortes and Vladimir

Vapnik in their 1995 paper Support-Vector Networks [58]. This work alleviates the SVM

from the linearly separable assumption on the dataset. Their paper introduces a way for

the SVM to intentionally misclassify training data points. This sacrification of certain

data points allows the SVM to potentially find better decision boundaries which means

56

possibly better generalization to unseen data points. Henceforth, we assume that the

dataset D (5.1) is not necessarily linearly separable.

Introduced in [58] is the use of slack variables ξ = (ξ1, . . . , ξN) for the hard-margin

SVM optimization model (5.18). We have their proposed optimization model,

minwTw + Γ
N∑
i=1

ξi (5.32)

s.t.

yi(w
Tx(i) + b) ≥ 1− ξi i = 1, . . . , N, (5.33)

ξ ≥ 0,

w ∈ Rn, b ∈ R, ξ ∈ RN .

The idea of the slack variables, as described in [69] is to penalize the constraints that

are not satisfied by introducing slack variable ξi for each Inequality (5.19). If a constraint

(5.19) is already satisfied before introducing the slack variable, then the slack variable

will have a value 0. If a constraint (5.19) is not satisfied, then we allow slacking of the

constraint through the corresponding slack variable. If a constraint (5.19) is violated,

then we can always increase the slack variable until the constraint becomes satisfied.

The additional summation term in the objective function (5.32) is the accumulation of

the slack variables, which can be seen as the total penalty in order to satisfy all the

constraints.

In [69], Γ is described as a hyperparameter determining how significant the slacking

of the constraints should be. A lower value of Γ implies that the penalty for slacking the

constraints is lower, thus misclassifcation is given less importance while maximizing the

margin is prioritized. Conversely, for a higher value of Γ it is prioritized to get as many

data points correctly classified as possible.

An additional interpretation of how Γ influences the optimization model of (5.32)

is provided by [86]. The tuning of Γ can be seen as a reflection of the level of noise

presented in the data points in D. Noisy data, as defined by [40], refers to data containing

a significant amount of additional, meaningless information known as noise. Such data

is a mixture of meaningful information and various forms of interference and errors.

In the context of the SVM, noisy data could manifest as the corruption of a labeled

data point (x(i), yi), such as the flipping of target yi or the perturbation of the coefficients

57

of the data point x(i). With the guidelines in [86], in cases where the data has little or

no noise, each data point is treated seriously. However, in the presence of noise, as it is

often the case in real-world problems, it is preferable to adjust to a lower value of Γ. This

adjustment signifies a reduced trust in the labeled data points.

Similar to the hard-margin SVM setting, we use Equation (5.30) and the sign function

(5.31) to make predictions on a test data point x̂.

5.3.2 Dual Formulation

In the 1995 paper by Cortes and Vapnik [58], we also come across the dual problem

of the soft-margin SVM. Their approach to derive the dual is succinct, assuming the

reader is familiar with duality theory. It is worth noting that online searches reveal a

common practice of employing simplified or partially complete derivations to streamline

the process. Since there is interesting optimization theory in which the dual problem

is dependent on, we have decided that we will in this section give a more detailed and

complete description of the dual problem derivation. The derivation is a compilation of

the following resources: [62], [78] and [49].

To derive the dual problem we will start by revisiting the soft-margin SVM model

(5.32) which we considered in the previous section. We make the insignificant change of

dividing the objective function in model (5.32) by 2. We have

min ζ =
1

2
wTw + Γ

N∑
i=1

ξi (5.34)

s.t.

yi(w
Tx(i) + b) ≥ 1− ξi i = 1, . . . , N, (5.35)

ξ ≥ 0, (5.36)

w ∈ Rn, b ∈ R, ξ ∈ RN .

We will refer to model (5.34) as the primal model. Important for deriving the dual is

that the primal model (5.34) is a convex optimization problem. First, note that all the

constraints in the primal are linear. By [4], this implies that the constraints form a convex

set, and the feasible set must therefore be convex. Second, inspecting the derivatives of

the objective function, we have

58

Dwζ = wT , Dbζ = 0, Dξζ = (Γ . . . Γ). (5.37)

We see that the Hessian of ζ with respect to all the variables is given by

Hζ(w, b, ξ) =



1 0 . . . 0 0 . . . 0

0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0

0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 0


. (5.38)

Decomposing (5.38), we see that all the elements are zero except for the elements

of the n by n upper left submatrix which is the identity matrix. We have that for all

(w, b, ξ) ∈ Rn+1+N ,

(w, b, ξ)THζ(w, b, ξ)(w, b, ξ) = wTw ≥ 0 (5.39)

With the Hessian Hζ(w, b, ξ) being positive semidefinite, the objective function is convex

for w ∈ Rn, b ∈ R and ξ ∈ RN . Therefore, it is also convex over the feasible set formed

by the constraints, as the feasible set is a subset of Rn+1+N .

With optimization model (5.34) being a convex optimization problem, we can apply

Proposition 2.5. This allows us to construct and solve the dual optimization model

corresponding to model (5.34) instead of the primal model (5.34). As the proposition

states, the optimal solution of the dual model corresponds to the Lagrange multipliers of

the primal model. Furthermore, it guarantees that the optimal values are equal.

Note that our goal when solving the primal model (5.34) is finding the optimal primal

solution that describes the optimal hyperplane. Proposition 2.5 does not guarantee any

simple way of obtaining the optimal solution of the primal model (2.6) when we solve the

dual model (2.9). As we will see by following the description in [62], when deriving the

corresponding dual model from the given primal model (5.34), the retrieval of the primal

variables w, b will be of little concern.

59

With α ∈ RN and β ∈ RN denoting the Lagrange multipliers for the constraints

(5.35) and (5.36) respectively, we have the Lagrangian function given by

L(w, b, ξ,α,β) = 1

2
wTw + Γ

N∑
i=1

ξi −
N∑
i=1

αi(yi(w
Tx(i) + b) + ξi − 1)−

N∑
i=1

βiξi, (5.40)

and the dual function given by

q(α,β) = inf
w∈Rn,b∈R,

ξ∈RN

{
L(w, b, ξ,α,β)

}
. (5.41)

Observe that for any α, β, the infimum on the right-hand side of (5.41) is a convex

optimization model. By applying the same line of reasoning as we did to show that the

objective function of the primal model (5.34) is a convex function, note that the first

derivatives of (5.41) is given by

DwL(w, b, ξ,α,β) = wT −
N∑
i=1

αiyi(x
(i))T , (5.42)

DbL(w, b, ξ,α,β) = −
N∑
i=1

αiyi, (5.43)

DξL(w, b, ξ,α,β) = (Γ . . .Γ)−αT − βT . (5.44)

Taking the second derivative for (5.42), we will have the identity matrix, while for

(5.43) and (5.44) we will have zeros. The Hessian of (5.41) is therefore identical to (5.38)

and (5.41) is a convex optimization problem.

With the infimum on the right-hand side of (5.41) being a convex optimization problem

given any α,β, we have from Proposition 2.4 that the necessary optimality condition is

also sufficient. Following the approach in [62], we proceed by applying Proposition 2.4 to

the infimum on the right-hand side of (5.41) to obtain the sufficient conditions. Taking

the derivative of the Lagrangian function (5.40) and equating it to zero we have the

60

following set of sufficient conditions,

DwL(w, b, ξ,α,β) = wT −
N∑
i=1

αiyi(x
(i))T = 0T , (5.45)

DbL(w, b, ξ,α,β) =
N∑
i=1

αiyi = 0, (5.46)

DξiL(w, b, ξ,α,β) = Γ− αi − βi = 0 i = 1, . . . , N. (5.47)

Note that condition (5.45) gives us a way of obtaining w as a function of α. Cal-

culations in [62] show that combining (5.47) and the non-negativity constraints for the

Lagrange multipliers α results in the constraints given by

0 ≤ αi ≤ Γ ∀i = 1, . . . , N. (5.48)

Substituting for w with sufficient condition (5.45) and adding the sufficient conditions

given by (5.46) and (5.48) as constraints, algebraic manipulation and simplification as

described in [62] yield to the following reduced dual function which only depends on α,

q(α) =
N∑
i=1

−1

2

N∑
i=1

N∑
j=1

yiyjαiαj(x
(i))Tx(j). (5.49)

We have now arrived at the dual optimization model formulation of primal model

(5.34). We have

max
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαj(x
(i))Tx(j) (5.50)

s.t.

N∑
i=1

αiyi = 0,

0 ≤ αi ≤ Γ i = 1, . . . , N.

From [49], we have a description of how to obtain the value of b given that we solve

the dual model (5.50). Consider the complementary slackness condition of the Lagrange

61

multipliers α,β. If 0 < αi < Γ for some i ∈ {1, . . . , N}, then it must be that the i-th

constraint (5.35) of the primal model (5.34) is active. We will then have

yi(w
Tx(i) + b) = 1. (5.51)

Solving equation (5.51) for b and substituting for w using (5.45) we have

b = yi −
N∑
j=1

yjαj(x
(j))Tx(i). (5.52)

With w, b both being obtainable using the dual SVM formulation, from [49], we can

make predictions on a data point x̂ using

ŷ = sign

(N∑
i=1

yiαi(x
(i))T x̂+ b

)
(5.53)

which is obtained by combining equation (5.45) with the prediction equation (5.30).

By [49], the data points x(i) with a corresponding positive Lagrange multiplier αi have

been given the unique name of support vectors. As described in [60], these data points

are called support vectors due to supporting the optimal hyperplane, in the sense that,

a change in the support vectors creates a change in the hyperplane. This is reflected by

observing that only the Lagrange multipliers with αi > 0 contribute to the value of w, b

in equations (5.45) and (5.52) respectively. To this observation, [60] adds,

” If you remove all the training data points other than the support vectors,

the solution remains unchanged.”

62

Figure 5.3: The support vectors account for the data points that lie at the margin (as
seen in the figure), or within the margin which corresponds to a positive ξi.

Figure (taken from [41]).

Just like the primal model (5.34), [49] ensures that the dual model (5.50) is a quadratic

programming problem which in general has a computational complexity of O(N3) where

N is the number of decision variables. Moreover, [49] continues that a key characteristic of

the dual model (5.50) is that for the primal model (5.34) we have n+1 decision variables

where n corresponds to the dimension of the data points x(i) while the dual model (5.50)

consists of N decision variables where N corresponds to the number of labeled data points

(x(i), yi) in D.

It may thus look disadvantageous to consider the dual problem when the amount

of data points is much larger than the dimension of the data points. The dual model

does however have another important characteristic. As seen in the objective function

of optimization model (5.50) and the retrieval of b in (5.52), the data points x(i) in the

dataset D arise as the scalar product among themselves. After presenting the concepts of

feature mapping and kernels in the subsequent sections, we will see that this characteristic

can be explored to formalize the kernel SVM in Section 5.5. With the kernel SVM,

we obtain the possibility to map the data into a higher dimensional space, where the

dimensionality can far exceed the number of data points without the computational

costs.

63

5.4 Feature Mapping and Kernels

5.4.1 Feature Mapping

In [86] it is mentioned that in ML, it is common to encounter datasets where the data

points are distributed in such a way that no adequate linear decision boundary can be

found. An ML practitioner using the algorithms discussed in Chapter 4 and 5 might find

it challenging to create models that are able to make use of the non-linear structures and

patterns of the data in order to make classification or regression conclusions.

Mentioned in [75], an often applied technique in this scenario is the technique called

feature mapping. This consists of using something called a basis function ϕ(x) :

Rn −→ RD which usually is constructed with D > n to map the data points x(i) into a

higher dimensional space. As explained in [77], having data points residing in a higher

dimensional space can potentially lead to uncovering and capturing patterns of non-

linearities among the original features of the data.

The following example taken from [38] illustrates benefits of using feature mapping.

Example 5.2.

Consider the data points from R2 which can be seen on the left side in Figure 5.4.

All the x(i) form a dataset that is neither linearly separable nor will any linear

decision boundary suffice in separating the two classes. However, by constructing

the basis function

ϕ(x) : R2 −→ R3,

given by

ϕ(x) = (x1, x2, x
2
1 + x22),

we are able to encode the Euclidean norm squared as the third component for each

data point x(i). Using basis function ϕ results in the transformed dataset seen

on the right side of Figure 5.4. This transformed dataset happens to be linearly

separable, which is not always the case, depending on the applied basis function. A

sufficiently good decision boundary can now be found by applying an appropriate

SL algorithm.

64

Figure 5.4: Depicted on the left-hand side are the labeled data points (x(i), yi)
from a binary classification dataset where x(i) ∈ R2. By using feature mapping,
specifically, applying the basis function ϕ to every data point x(i), we have the
transformed labeled data points illustrated on the right-hand side for which a suf-
ficient separating hyperplane can be obtained.

Figure (taken from [93]).

As demonstrated in Example 5.2, using the technique of feature mapping can be bene-

ficial, however, the construction of the basis functions may not be immediately apparent.

An initial approach involves manually crafting the basis functions based on intuition

gained from inspecting the provided data. While this method is feasible for data in two

or three dimensions, [88] notes that it becomes cumbersome or even infeasible when deal-

ing with higher-dimensional data. The challenge lies in intuitively finding meaning in the

data when they exist in a higher dimensional space.

To this initial approach of manually crafting the basis functions, [88] provides an

answer by considering a specific example which serves to both motivate the use of feature

mapping and the introduction of kernels. Due to its effectiveness, we consider this specific

example.

65

Example 5.3. ([88]).

Consider the basis function ϕ : Rn −→ R(2n) defined by

ϕ(x) =



1

x1
...

xn

x1x2
...

x1xn
...

x2x3
...

xn−1xn
...

x1x2 . . . xn



. (5.54)

The basis function ϕ performs a bit-flipping operation on the n original variables

x1, . . . , xn. Each xi can independently be in an on or off state, and since there are

n such variables, the dimensionality of x after the mapping via ϕ is 2n.

Discussed in [88] are advantages of using the basis function ϕ in the context of the

classification task. Most notably, given the labeled data points {x(i), yi}Ki=1, after

transformation of each data point x(i), there may exist a hyperplane separating

the data points ϕ(x(i)) into their respective classes depending on target yi.

Also observed are downsides to using basis function ϕ, especially, the dimensional-

ity of 2n. With the dimensionality of the new Euclidean space being exponential

in size with respect to n, as n grows, the dimensionality quickly becomes infeasible

for computers to handle with respect to computational power and computational

memory.

Shifting focus to another aspect highlighted in [88], costly is the process of comput-

ing the scalar product between points in the new Euclidean space as it consists of

performing 2n multiplication operations and 2n addition operations. Nonetheless,

66

consider the function k : Rn × Rn −→ R given by

k(x,y) =
n∏

i=1

(1 + xiyi). (5.55)

Expanding the right-hand side of (5.55) we have

= (1 + x1y1) · (1 + x2y2) · . . . · (1 + xnyn). (5.56)

From the expanded form in (5.56), using the same idea of the flipping operator to

define basis function ϕ, we can expand (5.56) further into

= 1 + x1y1 + . . .+ xnyn + x1y1x2y2 + . . .+ x1y1xnyn+ (5.57)

+x2y2x3y3 + . . . x2y2xnyn + . . . x1z1 . . . xnyn.

Observing that this is the same as the scalar product between vectors x,y ∈ Rn

that has been transformed by basis function ϕ we have

n∏
i=1

(1 + xiyi) = ϕ(x)Tϕ(y). (5.58)

With (5.55), we can calculate the scalar product between ϕ(x) and ϕ(x) using a

total of 2n multiplication operations. This is a reduction in operations compared

to calculating the scalar product without (5.55), then consisting of a total of 2 · 2n

multiplication and addition operations.

In Example 5.3, the function in (5.55) allows us to calculate the scalar product between

vectors x,y that has been mapped by (5.54) implicitly, that is, we do not have to first

perform the mapping of x,y, and then calculate the scalar product ϕ(x)Tϕ(x).

The function in (5.55) is called a kernel function, and its definition will be provided

in the following subsection (see Definition 5.1). Additionally, kernel functions will be

further explored in the next section.

Concluding this section, we have observed the existence of so called kernel functions

which in the case of Example 5.3 allows for a more efficient way to calculate the scalar

product between vectors after the transformation (5.54). Do these formulas always exist,

or are there perhaps conditions which need to be met? In the next section we will answer

these questions and look into how these mathematical structures work.

67

5.4.2 Kernel Functions and Kernels

For our discussion on kernels we will follow the definitions in [70] and [10]. We will also

further generalize the result in [70] by including the result in [88].

Definition 5.1. ([70]).

A kernel function or kernel is a function

k : Rn × Rn −→ R.

If k(x,y) = k(y,x) for all x,y in Rn, then we say that k is symmetric.

Definition 5.2. ([10]).

Let V = {x(1), . . . ,x(k)} be a set of vectors from Rn. We then define the Gram

matrix G as the n by n matrix with elements given by

gij = (x(i))Tx(j),

that is,

G =


(x(1))Tx(1) · · · (x(1))Tx(n)

...
. . .

...

(x(n))Tx(1) · · · (x(n))Tx(n)

 .

We now define a positive semidefinite kernel which will be the main machinery when

relating kernels to the technique of feature mapping. Definition 5.3 is derived from [70].

It’s important to note that we have adapted the definition to apply specifically to positive

semidefinite kernels, as opposed to positive definite kernels.

Definition 5.3. ([70]).

Let V = {x(1), . . . ,x(k)} be a set of vectors from Rn and k : Rn × Rn −→ R be

a symmetric kernel function. Define matrix K analogously to the construction of the

Gram matrix, but applying k instead of the scalar product. We have

K =


k(x(1),x(1)) · · · k(x(1),x(n))

...
. . .

...

k(x(n),x(1)) · · · k(x(n),x(n))

 . (5.59)

68

If K is positive semidefinite, then we call it a positive semidefinite kernel. Fur-

thermore, if K is positive definite, then we call it a positive definite kernel.

The interesting property of a positive semidefinite kernel K as stated in [88], is that

the elements in K corresponds to inner products between the vectors from V after some

transformation x −→ ϕ(x). This idea is proved in [70] for positive definite kernels. By

using the same line of reasoning in [70] along with the comments in [88] stating that

a positive semidefinite matrix is orthogonally diagonalizable, we are assured that the

statement indeed holds for positive semidefinite kernels as well. This is encapsulated in

Proposition 5.3.

Proposition 5.3. ([88], [70]).

Let V = {x(1), . . . ,x(k)} be a set of vectors from Rn, k : Rn×Rn −→ R be a symmetric

kernel function and consider matrix K as given in (5.59). If K is positive semidefinite,

then there exists a function ϕ : Rn −→ RD for some D ∈ N such that for x(i),x(j) ∈ V we

have for element Kij of the matrix K that

Kij = ϕ(x(i))Tϕ(x(j)). (5.60)

Proof. If K is positive semidefinite, it must be a symmetric matrix with non-negative

eigenvalues. As stated in [88], being symmetric implies K is orthogonally diagonalizable.

For K we have

K = PEP T (5.61)

where P is an orthogonal matrix and E a diagonal matrix of eigenvalues belonging to K.

If we now consider an element of K we have

Kij = (E
1
2Pi,:)

T (E
1
2Pj,:) (5.62)

with the subscript Pi,: to denote the vector containing all elements from row i of P .

By defining ϕ(x(i)) = E
1
2Pi,: for Equation (5.62) we get that

Kij = ϕ(x(i))Tϕ(x(j)), (5.63)

69

Combining the line of reasoning in [70] with the results in [88] we have more generally

that if K is a positive semidefinite kernel, then there exists a function ϕ : Rn −→ RD for

some D ∈ N such that for x,x
′
we have

k(x,x
′
) = ϕ(x)Tϕ(x

′
). (5.64)

After having introduced the concepts of feature mapping and kernels, we are now

prepared to delve into the discussion of the kernel SVM.

5.5 Kernel SVM

Recall that in the context of the dual SVM optimization model (5.50), we noted that the

data points x(i) appear as scalar products among themselves. This observation applies

to the objective function in (5.50), the equation in (5.52) used for calculating b, and the

prediction equation (5.53). We will now explore and make use of this property.

Suppose K is a positive semidefinite kernel constructed from the data points x(i) in D
and some symmetric kernel function k(·, ·). Proposition 5.3 ensures that each element Kij

of K corresponds to the scalar product between x(i) and x(j) after some transformation

ϕ : Rn −→ RD. Also consider the dual SVM optimization model (5.50) with the adjustment

that we express the scalar product ϕ(x(i))Tϕ(x(j)) between the data points x(i) and x(j)

in terms of elements Kij of K. With this modification we have that the kernel SVM

optimization model is given as

max
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

yiyjαiαjK(x(i),x(j)) (5.65)

s.t.

N∑
i=1

αiyi = 0,

0 ≤ αi ≤ Γ i = 1, . . . , N.

By replacing (x(i))Tx(j) with K(x(i),x(j)), we are now implicitly calculating the scalar

product ϕ(x(i))Tϕ(x(j)). Doing the same changes to Equation (5.52) used to calculate b

70

we get

b = yi −
N∑
j=1

yjαjK(x(j),x(i)). (5.66)

When predicting with the kernel SVM on a data point x̂ we apply that kernel function

used to construct the positive semidefinite kernel K. Also relying on (5.64), we have

ŷ = sign

(N∑
i=1

yiαik(x
(i), x̂) + b

)
. (5.67)

As stated in [88], the positive semidefinite kernel K is constructed from the data

points x(1), . . . ,x(N) in D and the kernel function given by k(·, ·). With this, K is an

(N,N)-matrix with fixed size and fixed elements because the data points x(1), . . . ,x(N)

in the dataset D are fixed. From an implementation perspective, this allows for the

precomputation of matrix K. This results in a significant improvement in computational

efficiency because we do not have to recalculate the elements in K, but can store them

in memory or storage devices. If we are interested in the value of ϕ(x(i))Tϕ(x(j)), then

we can query the storage medium and directly retrieve it.

In order to get a better understanding we will consider popular and well-established

kernel functions in the following example.

Example 5.4.

For the following kernel functions, we consider x,x
′ ∈ Rn.

1. Linear Kernel Function:

k(x,x
′
) = xTx

′
. (5.68)

The linear kernel function is equivalent to calculating the scalar product be-

tween x and x
′
.

2. Product Kernel Function:

k(x,x
′
) =

n∏
i=1

(1 + xix
′

i). (5.69)

71

For a description of the product kernel function, see Example 5.3.

3. Polynomial Kernel Function:

kd(x,x
′
) = (xTx

′
+ t)d. (5.70)

with 0 ≤ t ∈ R being a parameter and d being the degree of the polynomial.

4. Radial Basis Kernel Function:

k(x,x
′
) = e−

||x−x
′
||2

2κ2 (5.71)

with κ being a parameter. As described in [62], the radial basis kernel func-

tion can be thought of as centering a Gaussian distribution with variance

κ2 around each data point. Depending on the label of the data point, these

Gaussian distributions can be thought of as either ”bumps” or ”crevices”,

either ”pushing up” or ”pulling down” the surface which separates the two

classes.

An interesting property of using the radial basis kernel function in regards

to feature mapping is that it implicitly maps the data points into an infinite

dimensional space, as described in [47]. By (5.71), using the Taylor expansion

of e, we have

= e−
xT x
κ2 · e−

x′T x′
κ2 ·

∞∑
t=0

2t

κ2t · t!
· (xTx′)

t
. (5.72)

The exponential factors outside of the summation in (5.72) can be treated as

a constant. Each term t in the summation in (5.72) can be understood as the

polynomial kernel of degree t.

In conducting our numerical experiments in Chapter 7, we will use the equiv-

alent description of the radial basis function given by

k(x,x
′
) = exp

(
− γ||x− x

′||2
)

(5.73)

72

where γ = 1
κ

2
. We adapt this formulation because it corresponds with the

Scikit-Learn library implementation used in Chapter 7. As stated in [37]:

”Intuitively, the gamma parameter [γ] defines how far the in-

fluence of a single training example [labeled data point (x(i), yi)]

reaches, with low values meaning ‘far’ and high values meaning

‘close’.”

73

Chapter 6

Hyperparameter Optimization

(HPO)

We briefly touched on Hyperparameter Optimization (HPO) in Section 3.2 when dis-

cussing the steps of the SL pipeline. Recalling from Section 3.2, the concepts of HPO

appears in the model training and model evaluation steps. From this discussion, we un-

derstand hyperparameters as parameters belonging to a given ML algorithm. Varying

the hyperparameter configuration corresponding to a ML algorithm gives rise to different

configurations of the ML algorithm where hyperparameters are regarded as traits that

configure the structure of the algorithm. Once a hyperparameter configuration is set,

the values remain fixed and do not change, unlike, for example, the training parameters,

which are estimated during model training.

The importance of hyperparameters comes from their role in creating diverse configu-

rations for an ML algorithm. Depending on the specific dataset, different configurations

can lead to ML models with a varying degree of performance with respect to a given

performance metric. Given a dataset, our motivation and understanding of HPO, is to

determine which hyperparameter configurations result in the ML model with the highest

performance.

In this chapter, we will begin by framing the HPO problem, consisting of model

training and evaluation, as a bilevel optimization model. We conclude with Section 6.2

to present well-established HPO algorithms, in the field of ML.

74

6.1 Optimization Model

The contents discussed throughout this section heavily rely on the work of [72] as the

publication presents well-defined optimization models for both model training and model

evaluation. We will be relying on both their notation and optimization models. As [72]

discusses a particular kind of hyperparameters, which are non-negative regularization

hyperparameters, we will make the corresponding changes to promote an optimization

model that generalizes to a larger variety of hyperparameters, including integer and cat-

egorical values. In doing so, we will adapt the material from [92], which cultivates the

idea of describing the HPO model in terms of a blackbox. The following quote from [43]

efficiently describes a blackbox:

”In optimization, a blackbox is any process that when provided an input,

returns an output, but the inner workings of the process are not analytically

available. The most common form of blackbox is computer simulation, but

other forms exist, such as laboratory experiments for example.”

In the context of HPO, we will use a blackbox to describe the process of inputting a

hyperparameter configuration, and having the corresponding output as training parame-

ters obtained after training with the input hyperparameter configuration. We define the

blackbox as

f : Λ −→ Rρ (6.1)

where ρ is the number of training parameters and Λ is the parameter space encapsu-

lating all hyperparameter types under consideration which can include real, integer and

categorical values. Note that, in the standard case, ρ is equal to the dimensionality of

the data points x(i). However, ρ may differ, depending on techniques such as feature

mapping and kernelization (see Section 5.4).

Noteworthy is that there is no unique way to define the blackbox. We can equally

describe the entire process of model training and evaluation as a single blackbox, with

the input being a hyperparameter configuration and the output being the performance of

the corresponding model on unseen data. In choosing the former blackbox definition, we

emphasize that the unknown processes take place during training when applying different

hyperparameter configurations.

75

The work in [72], with hyperparameters being non-negative reals, allows for an explicit

expression of the corresponding objective functions, granting the use of continuity and

derivative properties. According to [72], their optimization model formulation enables

the use of continuous optimization methods, such as sequential quadratic programming

methods.

In declaring the assumption of a train-validation-test split (see Section 3.2) for a

given dataset D, we are ready to describe the optimization model which describes model

training and evaluation. We define the loss function gval : Rρ −→ R. There are multiple

loss functions to choose from, as seen in [72]. To make it concrete, for the regression task

we choose the mean squared error given by

gval(wλ) =
N∑
i=1

(yi − ŷi(wλ,x
(i)))2 (6.2)

where ŷi(wλ,x
(i)) is the prediction of the ML model. To clarify, in the case of having

a linear regression model, we have

ŷi(wλ,x
(i)) = wT

λx
(i). (6.3)

Since we covered the binary classification task in Chapter 5, we consider gval defined

as

gval(wλ) = − 1

N

N∑
i=1

δ(yi, sign(ŷi(wλ,x
(i)))) (6.4)

where δ(a, b) is the Kronecker delta function defined as

δ(a, b) =

1 if a = b,

0 if a ̸= b,
(6.5)

and sign(x) defined as

sign(x) =

+1 if x ≥ 0,

−1 if x < 0.
(6.6)

76

Given wλ, loss function (6.4) represents the percentage of correct predictions multi-

plied by negative one. We call the percentage of correct predictions the accuracy, as

defined in [15]. We have the factor of negative one because we minimize in optimization

model (6.7).

We have the optimization model given by

min gval(wλ) (6.7)

s.t. wλ ∈ argmin f(λ),

λ ∈ Λ,

where wλ is the optimal training parameter given the hyperparameter configuration

λ, the parameter space for hyperparameters is given by Λ, and f as defined in (6.1).

This constitutes the bilevel optimization model from [72], but with a more generalized

parameter space represented by Λ, and the use of blackbox f .

The optimization model (6.7), and the problem of HPO in general, have specific

important properties to keep under consideration, as highlighted in [92]. They discuss

three crucial aspects for the general case of HPO, which we will now present.

The first aspect are the properties of the loss function used during training. It should

be noted that for the constructed optimization model (6.7), the training loss function

does not explicitly appear, as it is a part of the blackbox f . For a description of where

the loss function explicitly appears, please refer to Section 3.2.

As defined in Section 3.2, the training loss function usually takes the given form

Ltrain(w) =
∑

(x,y)∈DSL-train

htrain(ŷ(w,x), y). (6.8)

where htrain(ŷi(w,x
(i)), y) is a given comparison function considering the predicted

value ŷ(w,x(i)) and the true value yi. The properties of Ltrain are highly dependent on

the comparison function htrain and the expression for ŷ. As seen in Chapter 4, applying

MLE leads to h(ŷ(w,x), y) = (ŷ(w,x) − y)2 and ŷ = wTx. For this specific case, we

have a nicely behaved loss function that is convex and differentiable. This however, is not

always the case as described in [92], here is the possibility of the loss function being nei-

ther convex nor differentiable. Without convexity, traditional optimization methods are

unsuitable, since they may converge to a local minimizer, rather than a global minimizer.

77

In the absence of differentiability, we will have to rely on Derivative-Free Optimiza-

tion (DFO) and Blackbox Optimization (BBO). As defined in [43], DFO considers

itself with algorithms that does not use derivatives, and BBO rely on algorithms that

assume either or both the objective function and constraints are given by blackboxes.

The strongly suggested comment from [43] states that:

”if (generalised) gradient information is available, reliable, and obtainable

at reasonable cost, then DFO and BBO will almost never outperform modern

gradient-based methods.”

The lack of differentiability for the loss function L means we will have to settle for

possibly inferior results.

The second aspect outlined in [92] is the large variety of hyperparameters, which in-

cludes continuous, discrete and categorical hyperparameters. From this, many numerical

optimization methods that only aim to tackle numerical or continuous variables are un-

suitable for HPO problems. This suggest a need to modify these algorithm, or to discard

them all together for other more capable algorithms.

The final aspect of HPO from [92] is that it can be computationally expensive to

train ML models. Factors such as the size of the training data or the complexity of a

model, for example, the number of training parameters, can impact the computational

cost. Additionally, statements from [84] highlight expenses in terms of financial resources

and time.

Inspecting the optimization model (6.7), it becomes evident that performing a single

evaluation of the objective function requires first training a model with a specified hy-

perparameter configuration. In retrieving the estimated training parameters, predictions

must be made on the validation dataset to obtain the objective function value. Given

that the training of certain models can take days or weeks, depending on available hard-

ware as suggested by [84], it becomes vital to employ optimization algorithms suitable

for the HPO problem.

With an initial overview of the HPO setting, we are now ready to discuss applicable

algorithms for solving the HPO problem. Assuming a blackbox f as described in (6.1) for

the objective function in our HPO optimization model (6.7), we have forfeited the use of

optimization algorithms that rely on properties like continuity and differentiability. This

is reflected in the algorithms in the subsequent sections, as they operate without such

assumptions.

78

6.2 HPO Algorithms

6.2.1 Grid Search

Grid search is a natural and intuitive approach for solving the HPO model (6.7). We

adapt the description from [19]. Assuming we have k distinct hyperparameters to tune, by

inputting a finite set Si for each hyperparameter i, grid search creates an n-dimensional

grid. Each point on the grid corresponds to a hyperparameter configuration and the

total number of points is equal to multiplying the cardinality of each of the k sets for the

hyperparameters. The total number of points is equal to

k∏
i=1

|Si|. (6.9)

With a defined grid, the algorithm systematically picks a hyperparameter configura-

tion, trains the corresponding model, then evaluates the performance of the model. This

exhaustive search explores the entire grid, until the best hyperparameter configuration is

found.

The strengths of the algorithm, as highlighted in [80], lie mostly in its simplicity to

understand and its power of parallelization. The algorithm is non-sequential, meaning

that the points on the grid do not depend on each other. The evaluation of the points

can, therefore, be run in parallel, e.g., using multiple computers.

Further drawing from the insights of [80], grid search also comes with challenges and

drawbacks. Most notably, we have the fact that the algorithm scales poorly. Inspecting

(6.9), we observe a rapid increase in the number of evaluations as we raise the number of

hyperparameters to tune and the points to evaluate for each hyperparameter. The algo-

rithm is also not data-efficient and runs naively. The evaluation of new hyperparameter

configurations does not take into account the results of previous evaluations. Addition-

ally, there is the argument that computing power might be wasted on configurations that

do not significantly impact the results. Lastly, there is the challenge of how to define

the grid. There is no guarantee that the values selected for the grid are the best. The

candidates provided as input for hyperparameters might yield inferior results compared

to some other candidates.

In the following example, we make the procedure of grid search more concrete.

79

Example 6.1. Grid Search Procedure

Suppose we are considering the classification task and we would like to apply the

kernel SVM algorithm using the RBF kernel (see Section 5.5). The corresponding

hyperparameters would be Γ which is a positive real value that determines the

costs of slacking a constraint, and γ which is a positive real value influencing the

width of the Gaussians centred around each data point x(i) in the training dataset.

With hyperparameters Γ and γ, we choose their respective finite sets to be

S1 = {0.1, 1, 10, 100} and S2 = (0.1, 0.5, 1, 1.5, 2}.

This establishes a 2-dimensional grid with a total of |S1| · |S2| = 20 points. By

searching for the best hyperparameter configuration, we perform an exhaustive

search of the grid and after everything has been evaluated, choose the best config-

uration.

6.2.2 Random Search

Following the description in [80], closely related to grid search, we have the random

search algorithm. For discrete hyperparameters, we still supply the algorithm with a fi-

nite set containing hyperparameter values, but for continuous hyperparameters we supply

a bound for the values. In both cases, we additionally supply probability distributions

for the values each hyperparameter can take, the conventional method would be to use

uniform distributions, this however, need not to be the correct distributions

To cultivate this understanding, consider the case where we have n + m hyperpa-

rameters to be tuned. Let n of the hyperparameters be continuous where the bounds

corresponding to hyperparameter i is given by li and ui respectively. We then treat

hyperparameter i as a random variable Xi, that is,

Xi ∼ Uniform(li, ui), for i = 1, . . . , n.

Furthermore, let m of the hyperparameters be discrete where possible values for hy-

perparameter j is represented by the set Sj. Like for the continuous hyperparameters,

80

we treat each hyperparameter j as a random variable Yj, we have

Yj ∼ DiscreteUniform(Sj), for j = 1, . . . ,m.

When sampling hyperparameter configurations, we sample from the joint probability

distribution given by

θ ∼ P (X1, . . . , Xn, Y1, . . . , Ym).

A common approach when sampling, especially for hyperparameter values that can

range in multiple orders of magnitude, is the trick of using log-uniform sampling. De-

scribed in [80], this trick aims to better explore the parameter space. Assuming a con-

tinuous hyperparameter spans a large range of values, it can be more effective to explore

this range when sampling from the log-uniform distribution instead of the uniform dis-

tribution. By implementing a log-uniform sampling, there is a more equal probability of

exploring the different orders of magnitude (see Example 6.2).

Example 6.2. Using Log-Uniform Sampling

Suppose we wish to apply ridge regression and optimize for the best hyperparameter

Ψ, which is a non-negative real value (see Section 4.3). In assuming no prior

knowledge for a good value for Ψ, we input the interval I = [0.1, 100] to random

search.

If we were to sample uniformly from I, the probability of sampling from the range

[0.1, 1] is a lot lower than the range [1, 100] because [1, 100] is much larger in

scale. In applying the log-uniform distribution, in this case, transformation function

f(x) = log10(x), we take the logarithm of the lower and upper bounds of I. This

results in the new log space interval Î = [−1, 2]. We observe the following:

(i) The log space interval [−1, 0] corresponds to the linear space interval [0.1, 1].

(ii) The log space interval [0, 1] corresponds to the linear space interval [1, 10].

(iii) The log space interval [1, 2] corresponds to the linear space interval [10, 100].

With observations (i)− (iii), by sampling from Î and transforming the sample into

linear space using r(x) = 10x, we equally explore the intervals [0.1, 1], [1, 10], and

[10, 100]. This trick enables equal exploration among intervals of different orders

of magnitude.

81

Random search shares many of the same advantages and drawbacks as grid search

which are listed in [80]. The most notable benefit of random search over grid search is

that there is no grid of points to restrict ourselves to. Instead, random search can freely

sample from the parameter space, determined by the input bounds.

As highlighted in Figure 6.1 from [46], the comparison between grid search and random

search is noticeable in the cases where one of the hyperparameters is more important

in terms of model performance than the other. As the value for the less important

hyperparameter has little impact, it would be beneficial to spend time and computational

power on exploring different values of the important hyperparameter. Both algorithms

do a total of 9 evaluations, however, random search allows for testing a broader range of

important hyperparameter values as it is not restricted to points on a grid. This exact

property makes random search more capable of spotting hyperparameter values that are

sensitive. Being sensitive, they might not get selected using the predefined grid of grid

search, but by randomly sampling, they have a higher probability of being selected.

Figure 6.1: Illustrated are the hyperparameter configurations evaluated by grid search
and random search within the same parameter space. The green distribution overlaid
on the figures indicates model performance, with higher values being better. The figure
captures the concept that random search explores more of the relevant parameter space,
especially when hyperparameters have a varying degree of importance with respect to
model performance.

Figure (taken from [46]).

Also, being of a non-sequential nature, random search has the potential for paral-

lelization. Nevertheless, the algorithm remains unsophisticated and naive, as it is not

data-efficient, computationally expensive to perform, and may potentially evaluate hy-

perparameter configurations that have little importance.

82

Example 6.3 aims to make the use of random search more clear.

Example 6.3. Random Search Procedure

Consider the setting of Example 6.1, but using random search instead. Thus,

we have hyperparameters Γ and γ to optimize. Suppose we have confidence

that the optimal value for Γ lies in the interval IΓ = [1, 10], but we are less sure

about the optimal value for γ, leaving us with the broader interval of Iγ = [0.001, 1].

Since Iγ scales multiple orders of magnitude, we use log-uniform sampling. With

f(x) = log10(x), we have the log space interval Îγ = [−3, 0].

To match with the grid search example in Example 6.1, we allow random search to

make a total of 9 evaluations.

83

Chapter 7

Numerical Experiments

In this chapter, we adopt an empirical perspective to assess the performance of the

discussed SL algorithms. This chapter aims to provide concrete examples that solidify

and support the theoretical framework.

To start, we will provide a description and reasoning for the selection of datasets for

both the classification and regression tasks. Furthermore, we will detail the program-

ming environment, including the programming language, libraries, and other relevant

information that could impact the experiments.

Our focus will be on the SL algorithms: linear regression and SVM. We will look

into the individual characteristics of each algorithm. Evaluating these algorithms across

different datasets will reveal their strengths and weaknesses. We will not optimize for

the hyperparameters, but rather see how models behave with different hyperparameter

configurations.

7.1 Datasets and Programming Setup

In conducting our experiments, we will apply a train-validation-test split to the datasets

using the train test split function from Scikit-Learn (for function details, refer to

[31]). With the chosen function parameters summarized in Table 7.2, we split DSL into

DSL-train, DSL-val and DSL-test with a data ratio of 70%, 15% and 15% respectively.

Additionally, we will perform standardization of the datasets. For the regression

datasets we perform standardization for x(i) and yi. For the classification datasets we

84

only standardize x(i). In standardizing the data, we calculate the sample mean and sample

variance only from dataset DSL-train. This is because the data in DSL-val and DSL-test are to

remain unseen for the SL models, in the sense that they are not part of model training.

As the SL models make predictions on an unseen data point x̂ such as the data points

in DSL-val and DSL-test, we standardize x̂ using the sample mean and variance calculated

from the data points in DSL-train.

In the following subsections we discuss the datasets chosen for our numerical experi-

ments. Thereafter, we give a description of the programming setup, including tables of

functions and their corresponding parameter settings. This summary aims to simplify

the reproduction of the results in this chapter.

7.1.1 Regression Datasets

Note that for the regression datasets we will consider, the independent variable x is a

scalar. We will therefore denote the independent variable and a data point by x and xi

respectively.

The first regression dataset, called R1 is generated using the function from Scikit-

Learn called make regression. For a description of the function, refer to [28]. For the

function parameter settings used in our experiments, please consult Table 7.3.

Using make regression, we generate a linear dataset where the true underlying func-

tion is given by

y(x) = ax+ b (7.1)

with a = 41.74110031 and b = 30. Dataset R1 consists of 100 labeled data

points (xi, yi) with xi, yi ∈ R. Each yi has been perturbed by some Gaussian noise

ϵi ∼ N (0, 502). Dataset R1 is illustrated in Figure 7.1.

The second regression dataset called R2 has a non-linear structure. The dataset is

generated by sampling from the true underlying function given by

y(x) = x3 · sin(x). (7.2)

85

Dataset R2 consists of 100 labeled data points (xi, yi) with xi, yi ∈ R. To introduce

noise for each labeled data point (xi, yi), during the sampling process each yi has been

perturbed by ϵi ∼ N (0, 902). In sampling xi, we uniformly sample from the interval [0, 8].

Dataset R2 is illustrated in Figure 7.2.

Figure 7.1: Depicted are the labeled data points of R1 before performing standardization
and a train-validation-test split of the dataset. The red line indicates the true underlying
function.

Figure 7.2: Depicted are the labeled data points of R2 before performing standardization
and a train-validation-test split of the dataset. The red curve indicates the true underlying
function.

86

7.1.2 Classification Datasets

Famously known, as described in [17], Fisher’s Iris dataset, or simply, the Iris dataset,

is a classification dataset consisting of 50 samples for each of the three Iris species:

Iris setosa, Iris virginica, and Iris versicolor. For each sample, there are four features

measured: the length and width of the sepals and petals, in centimeters.

For our setup, we turn the dataset into a binary dataset by only considering the

species Iris setosa and Iris versicolor. Furthermore, we apply dimensionality reduction

utilizing the method of PCA. This reduces the features (dimensions) of x(i) from four to

two. This makes the dataset appropriate for 2-dimensional visualization.

The Iris dataset before performing preprocessing is depicted in Figure 7.3. For sim-

plicity, we will refer to the preprocessed Iris dataset simply as the Iris dataset. Fisher’s

Iris dataset is publicly available in [61].

The two moons dataset is a synthetic dataset generated using the Scikit-Learn

function called make moons. Documentations for the make moons function can be found

in [39]. For the function parameter settings used in our experiments, please consult Table

7.4.

As seen in [39], the make moons function is utilized to generate datasets for classifi-

cation tasks, enabling the evaluation of SL algorithms. The datasets generated by the

two moons function consist of data that follows a non-linear pattern. This is because

the two moons dataset consists of two interleaving half-moon shapes, each representing

a distinct label. Each data point x(i) is characterized by two features. Thus, the data

points reside in a 2-dimensional plane and can be visually illustrated. To sufficiently

classify the data points from this dataset, the decision boundary need to have non-linear

curvatures.

We will consider the generated two moons dataset depicted in Figure 7.4. The gener-

ated dataset has a total of 1000 labeled data points.

87

Figure 7.3: Depicted are the labeled data points of Fisher’s Iris dataset after performing
dimensionality reduction and standardization.

Figure 7.4: Depicted are the labeled data points of the two moons dataset after performing
standardization.

7.1.3 Programming Setup

To conduct our investigations we rely on Python version 3.10.11 along with the use of

the programming libraries listed in Table 7.1.

88

Programming Library Version
Numpy 1.24.2

Matplotlib 3.8.0
Pandas 2.1.1

Scikit-Learn 1.3.0
Scikit-Optimize 0.9
JupyterLab 4.0.8

Table 7.1: Programming libraries with their corresponding version.

In the following we have tables of functions we use for setting up our numerical

experiments. Each table has the applied parameter values corresponding to the function.

If a parameter value has not been specified, the default value has been used (see the

corresponding citation in each table for the default parameter value).

We would also like to clarify that the PCA algorithm and the SL algorithms applied

in our experiments are algorithm implementations from the Scikit-Learn library. For

information on the implementation and usage of the SL algorithms, please refer to the

Scikit-Learn documentation in [29]. The parameter settings for the SL algorithms can be

found in Section 7.2.

train test split
Parameter name Parameter value

shuffle True
random state 42

test size
0.3 (for train / val-test split)

0.5 (for val / test split)

Table 7.2: Parameter values used for the train test split function in [31].

make regression
Parameter name Parameter value

n samples 100
n features 1

noise 50
bias 30

random state 42

Table 7.3: Parameter values used for the make regression function in [30].

89

make moons
Parameter name Parameter value

n samples 1000
shuffle True
noise 0.3

random state 42

Table 7.4: Parameter values used for the make moons function in [39].

7.2 SL Algorithms

7.2.1 Linear Regression

With linear regression, we will consider the methods of MLE and MAP. For both meth-

ods, we will experiment with one model using feature mapping and one without. For the

hyperparameter Ψ corresponding to the method of MAP (see Section 4.3), we will ex-

periment with different values to gain a better understanding of how the hyperparameter

influences the models.

To better illustrate the differences between the use of MLE and MAP, we construct

the basis functions ϕR1 and ϕR2 for R1 and R2 respectively. For R1 we consider the basis

function given by

ϕR1(x) =



1

x

x2

...

x10


(7.3)

and for R2, we use the basis function given by

ϕR2(x) =



1

x

x2

...

x20


. (7.4)

90

In performing the train-validation-test split, we splitR1 intoR1-train,R1-val andR1-test.

DatasetR2 is split intoR2-train,R2-val andR2-test. Furthermore, the loss function for linear

regression using the method of MLE and MAP can be found in optimization models (4.14)

and (4.47) respectively. As stated in [90], a common evaluation loss function for regression

tasks is the loss function of MSE. We will therefore apply the loss function of MSE for

model evaluation when using both methods of MLE and MAP. Note that all upcoming

MSE values are rounded to two decimal digits after the comma.

We are now set to conduct our numerical experiments for linear regression.

Consider dataset R1. Recall that the dataset is constructed with the true underlying

function being linear. This suggests that applying MLE and MAP without performing

feature mapping should be sufficient for modelling the data in the dataset. The result for

MLE without feature mapping for dataset R1 is illustrated in Figure 7.5. Furthermore,

illustrated in Figure 7.6 and 7.7 is the use of MAP with the respective hyperparameter

values of Ψ = 10−2 and Ψ = 102. We observe that Figure 7.7 with Ψ = 102 depicts a

greater penalization of w compared to Figure 7.6 with Ψ = 10−2, as evidenced by the

steeper slope of the regression line in the former.

Figure 7.5: The use of MLE without feature mapping is demonstrated on datasets R1-train

and R1-val, resulting in MSE values of 0.43 and 0.80 respectively.

91

Figure 7.6: The use of MAP without feature mapping is demonstrated on datasetsR1-train

and R1-val with a hyperparameter value of Ψ = 10−2. This results in MSE values of 0.43
and 0.80 for the training and validation datasets respectively.

Figure 7.7: The use of MAP without feature mapping is demonstrated on datasetsR1-train

and R1-val with a hyperparameter value of Ψ = 102. This results in MSE values of 0.62
and 1.13 for the training and validation datasets respectively.

Consider now applying basis function ϕR1 to the data points xi in R1. The result

for MLE with ϕR1 for dataset R1 is illustrated in Figure 7.8. Recall from Section 4.2

that when applying MLE to linear regression, we optimize for the training parameters w

that maximizes the likelihood of the observed data as seen in optimization model (4.8).

This means that the ŵ corresponding to the regression curve in Figure 7.8 represent the

training parameters that maximizes the likelihood of observing the data in R1, that is,

P (R1|ŵ).

92

Figure 7.8: The use of MLE with feature mapping is demonstrated on datasets R1-train

and R1-val, resulting in MSE values of 0.40 and 0.94 respectively.

Illustrated in Figure 7.9 and 7.10 is the use of MAP with basis function ϕR1 and

the respective hyperparameter values of Ψ = 10−1 and Ψ = 10. In using MAP, we

have the prior assumption that the training parameters w follow a multivariate Gaussian

distribution N (0,Σ) with Σ being a diagonal matrix with positive coefficients.

Figure 7.9: The use of MAP with feature mapping is demonstrated on datasets R1-train

and R1-val with a hyperparameter value of Ψ = 10−1. This results in MSE values of 0.40
and 0.88 for the training and validation datasets respectively.

93

Figure 7.10: The use of MAP with feature mapping is demonstrated on datasets R1-train

and R1-val with a hyperparameter value of Ψ = 10. This results in MSE values of 0.42
and 0.86 for the training and validation datasets respectively.

Now, consider dataset R2. Recall that the dataset is constructed with the true under-

lying function being non-linear. Contrary to dataset R1, this suggests that applying MLE

and MAP without performing feature mapping may not be sufficient for modelling the

data in the dataset. The results for MLE and MAP without feature mapping on dataset

R1 are illustrated in Figure 7.11 and Figure 7.12, respectively. As seen, the depicted

regression lines for both figures are not sufficiently capable of modelling the non-linearity

of the data, as the true underlying function seen in Figure 7.2 is non-linear.

Figure 7.11: The use of MLE without feature mapping is demonstrated on datasets
R2-train and R2-val, resulting in MSE values of 0.93 and 1.14 respectively.

94

Figure 7.12: The use of MAP without feature mapping is demonstrated on datasets
R2-train and R2-val with a hyperparameter value of Ψ = 10−1. This results in MSE values
of 0.93 and 1.14 for the training and validation datasets respectively.

Analogous to our experiments with dataset R2, we apply MLE and MAP utilizing

the basis function ϕR2 . The result for MLE with ϕR2 for dataset R2 is illustrated in

Figure 7.13. The results of applying MAP with feature mapping and the respective

hyperparameter values of Ψ = 10−2 and Ψ = 10 is shown in Figure 7.14 and 7.15. As

we increase the value of Ψ, we observe a decrease in fluctuation for the regression curve

along with a decrease in the value of MSE for the validation dataset.

Figure 7.13: The use of MLE with feature mapping is demonstrated on datasets R2-train

and R2-val, resulting in MSE values of 0.23 and 41.81 respectively.

95

Figure 7.14: The use of MAP with feature mapping is demonstrated on datasets R2-train

and R2-val with a hyperparameter value of Ψ = 10−2. This results in MSE values of 0.25
and 11.68 for the training and validation datasets respectively.

Figure 7.15: The use of MAP with feature mapping is demonstrated on datasets R2-train

and R2-val with a hyperparameter value of Ψ = 10. This results in MSE values of 0.29
and 0.40 for the training and validation datasets respectively.

7.2.2 Soft-Margin SVM

In this subsection we will apply the soft-margin SVM to the Iris dataset and the two

moons dataset. For each dataset we will apply the soft-margin SVM without using feature

mapping to get an understanding of the algorithm in its original state. Furthermore, we

will be applying the technique of feature mapping to gain better insight into the technique

and to observe the influence of various values of the hyperparameter Γ. For a description

96

of Γ and soft-margin SVM, please refer to Section 5.3. In our experiments we will use

the accuracy metric for both training and evaluation. This corresponds to using loss

function (6.4) for optimization model (6.7). Recall that this loss function (6.4) represents

the percentage of correct predictions multiplied by negative one. Note that all upcoming

accuracy values are rounded to two decimal digits after the comma.

As presented in Section 5.3, applying soft-margin SVM corresponds to solving the

optimization model (5.32). Consequently, the algorithm searches for a hyperplane that

maximizes the margin, but allow for certain degrees of misclassifiactions of labeled data

points (x(i), yi) depending on the hyperparameter Γ. In the case of applying feature

mapping to the data points x(i), the algorithm searches for a hyperplane that maximizes

the margin in the new Euclidean space in which the data points are mapped to.

In applying feature mapping we will consider the basis functions given by

ϕA1(x) =



1

x1

x2

x1x2

x21

x22


(7.5)

and

ϕA2(x) =



1

x1

x2

x1x2

x21

x22
...

x32


. (7.6)

We are now ready to examine the results for the soft-margin SVM.

Consider the Iris dataset. In Figure 7.16 we have the decision boundary corresponding

to Γ = 1 without using feature mapping. What we want to illustrate is that with the

97

Iris dataset being linearly separable, the soft-margin SVM finds a hyperplane perfectly

separating the two classes.

Figure 7.16: The use of soft-margin SVM without feature mapping demonstrated on the
Iris training (left-hand side) and validation (right-hand side) dataset with Γ = 1. This
results in accuracy scores of 1 for both the training and validation datasets.

Now consider the two moons dataset. In Figure 7.17, we once more apply the algo-

rithm without feature mapping and the hyperparameter Γ = 1. We observe that due to

the non-linear structure of the dataset, the found decision boundary is not sufficiently

separating the two classes. This is as expected because without using feature mapping,

no hyperplane that sufficiently separates the classes can be obtained.

Figure 7.17: The use of soft-margin SVM without feature mapping demonstrated on the
two moons training (left-hand side) and validation (right-hand side) dataset with Γ = 1.
This results in accuracy scores of 0.85 and 0.83 for the training and validation datasets
respectively.

98

To illustrate how feature mapping can influence the decision boundary for soft-margin

SVM we apply basis functions ϕA1 and ϕA2 to the data points x(i) in the two moons

dataset. Applying ϕA1 with Γ = 1, we observe that the corresponding decision boundary

in Figure 7.18 has a slight curvature but it is not sufficiently able to follow the curves of

the half moons. However, examining Figure 7.20 corresponding to using basis function

ϕA2 with γ = 1, we see that the corresponding decision boundary is able to replicate the

curvature of the half moons. From this, we can conclude that by applying basis function

ϕA1 , the data points are mapped to an Euclidean space where a sufficient hyperplane

cannot be obtained. Nonetheless, in applying basis function ϕA2 , we map the data points

to an Euclidean space where a sufficient separating hyperplane exists, as seen by the

results in Figure 7.18 and 7.20.

Before concluding this subsection, we want to highlight the influence of different values

of the hyperparameter Γ. Recalling the contents of Section 5.3, the hyperparameter Γ

determines how costly it is to misclassify a labeled datapoint (x(i), yi). A lower value of

Γ implies that the penalty for misclassifying a labeled datapoint is lower. Conversely,

with a greater value of Γ, the algorithm prioritizes to get as many data points correctly

classified as possible.

Using basis function ϕA2 , consider Figure 7.19 and 7.20 with Γ = 10−2 and Γ = 1

respectively. With the value of Γ lower in the former, a comparison of the two figures

reveals that Figure 7.19 allows for a larger number of misclassifications compared to

Figure 7.20. This is to be expected, as seen in the discussion on the soft-margin SVM

optimization model (5.32).

Figure 7.18: The use of soft-margin SVM with basis function ϕA1 demonstrated on the
two moons training (left-hand side) and validation (right-hand side) dataset with Γ = 1.
This results in accuracy scores of 0.85 and 0.83 for the training and validation datasets
respectively.

99

Figure 7.19: The use of soft-margin SVM with basis function ϕA2 demonstrated on the two
moons training (left-hand side) and validation (right-hand side) dataset with Γ = 10−2.
This results in accuracy scores of 0.90 and 0.90 for the training and validation datasets
respectively.

Figure 7.20: The use of soft-margin SVM with basis function ϕA2 demonstrated on the
two moons training (left-hand side) and validation (right-hand side) dataset with Γ = 1.
This results in accuracy scores of 0.92 and 0.91 for the training and validation datasets
respectively.

7.2.3 Kernel SVM

In this subsection we will be applying the RBF kernel to kernel SVM. We will refer

to it as the RBF SVM. We will set the hyperparameter Γ to 1. Our focus will be on

observing the influence of different values of the hyperparameter γ. For a description of

100

the hyperparameter Γ, please refer to Section 5.3. For a description of γ and kernel SVM

in general, refer to Section 5.5.

Similar to our experiments with the soft-margin SVM (see Subsection 7.2.2), we will

use the accuracy metric for both training and evaluation. Note that all upcoming accuracy

values are rounded to two decimal digits after the comma. Additionally, for the RBF SVM

algorithm we will exclusively focus on the two moons dataset. This choice is made to

better illustrate the impact of the hyperparameter γ.

As presented in Section 5.5, RBF SVM implicitly maps the data points x(i) into a

higher dimensional space with the use of kernels, this without the computational cost

of mapping the data points. This allows for non-linear decision boundaries. With the

capability of constructing non-linear decision boundaries, we can expect the algorithm to

produce sufficient results for the two moons dataset.

We are now ready to examine the results of RBF SVM on the two moons dataset (see

Subsection 7.1.2).

The results of RBF SVM with hyperparameter values of γ = 10−1, γ = 10 and γ = 102

are illustrated in Figure 7.21, 7.22 and 7.23 respectively. Intuitively, as stated in [37], we

observe that a greater value of γ corresponds with a smaller area of influence around each

labeled data point. This intuitive explanation can be better understood by recalling the

contents in Example 5.4. The RBF kernel we have applied is given by

k(z, z
′
) = exp

(
− γ||z− z

′||2
)
. (7.7)

where z, ẑ ∈ R2. In (7.7), we see that with a greater value of γ, the kernel function

output decreases faster as ||z− z
′ ||2 increases compared to a lower value of γ.

The heat map of the decision boundaries corresponding to the hyperparameter values

of γ = 10−1, γ = 10 and γ = 102 are illustrated in Figure 7.24, 7.25 and 7.26 respectively.

Especially in Figure 7.26, we observe the idea described in Example 5.4. When applying

the RBF SVM, the decision boundary will consist of a combination of elevated and lowered

hills. Depending on the target yi of a data point x(i), the algorithm will either elevate or

lower the decision boundary around data point x(i).

Furthermore, inspecting the accuracy scores in Figures 7.21, 7.22 and 7.23, we observe

the trend that as γ increases, the accuracy scores for the training datasets improve. The

101

same is true for the accuracy scores for the validation datasets, however, with γ = 102 in

Figure 7.23, the accuracy score for the validation dataset start to decrease compared to

that of Figure 7.22. Given a performance metric, performing well on the training data

does not necessarily correspond to performing well on the validation dataset.

Figure 7.21: The use of RBF SVM demonstrated on the two moons training (left-hand
side) and validation (right-hand side) dataset with Γ = 1 and γ = 10−1. This results in
accuracy scores of 0.87 and 0.84 for the training and validation datasets respectively.

Figure 7.22: The use of RBF SVM demonstrated on the two moons training (left-hand
side) and validation (right-hand side) dataset with Γ = 1 and γ = 10. This results in
accuracy scores of 0.93 and 0.93 for the training and validation datasets respectively.

102

Figure 7.23: The use of RBF SVM demonstrated on the two moons training (left-hand
side) and validation (right-hand side) dataset with Γ = 1 and γ = 102. This results in
accuracy scores of 0.96 and 0.90 for the training and validation datasets respectively.

Figure 7.24: A heat map of the optimal RBF SVM decision boundary with Γ = 1,
γ = 10−1 for the two moons dataset. Illustrated are some of the labeled data points from
the training dataset.

103

Figure 7.25: A heat map of the optimal RBF SVM decision boundary with Γ = 1, γ = 10
for the two moons dataset. Illustrated are some of the labeled data points from the
training dataset.

Figure 7.26: A heat map of the optimal RBF SVM decision boundary with Γ = 1,
γ = 102 for the two moons dataset. Illustrated are some of the labeled data points from
the training dataset.

104

Chapter 8

Conclusion

In this master’s thesis, our primary objective has shed light on the fundamental use and

importance of optimization in Machine Learning (ML). With an assumed background in

optimization, we explored where optimization principles are applied and which theories

and algorithms are involved. In this exploration, we found optimization to be of utmost

importance in the learning process within the field of Supervised Learning (SL). Examin-

ing the learning processes for linear regression and Support Vector Machines (SVM), we

observed that their optimization models were convex, allowing for closed-form solutions

or the application of quadratic solvers to obtain optimal solutions. Noteworthy is that

these algorithms represent only a subset of the diverse landscape of ML algorithms. In

this broader context, it is not uncommon to encounter algorithms with learning processes

expressed in terms of non-convex optimization models.

Additionally to the study of the two SL algorithms, we also discussed the process

of Hyperparameter Optimization (HPO). Within this domain, it became clear that con-

ventional properties like continuity and differentiability may not always be assumed.

Furthermore, with the wide range of forms hyperparameters can take, like real, discrete

or categorical values, we had to compensate by considering algorithms capable of han-

dling such variability. This led to the consideration of derivative-free and black-box

algorithms, which make little to no assumptions about the true underlying function we

are maximizing or minimizing depending on the context.

While the ML algorithms and optimization discussed in this master’s thesis only

scratch the surface of the interplay between optimization and ML, it is key to appreciate

the valuable insights gained from such exploration. While the algorithms and concepts

may appear straightforward, they make up the foundation of more complex and sophis-

ticated ML algorithms.

105

Abbreviations and Notation

AI Artificial Intelligence.

BBO Blackbox Optimization.

DFO Derivative-Free Optimization.

HPO Hyperparameter Optimization.

i.i.d Independent and Identically Distributed.

MAP Maximum a Posteriori.

ML Machine Learning.

MLE Maximum Likelihood Estimation.

MSE Mean Squared Error.

PCA Principal Component Analysis.

pdf Probability Density Function.

RBF Radial Basis Function.

RL Reinforcement Learning.

SL Supervised Learning.

SVM Support Vector Machines.

106

Bibliography

[1] Linear Separability. Wikipedia, 2022, (visited 04.09.2023).

URL: https://en.wikipedia.org/wiki/Linear separability.

[2] Introduction to Transforming Data. Google, 2022, (visited 14.06.2023).

URL: https://developers.google.com/machine-learning/data-prep/transform/

introduction.

[3] MNIST Database. Wikipedia, 2023, (visited 02.06.2023).

URL: https://en.wikipedia.org/wiki/MNIST database.

[4] Linear Inequality. Wikipedia, 2023, (visited 02.09.2023).

URL: https://en.wikipedia.org/wiki/Linear inequality.

[5] Support Vector Machine. Wikipedia, 2023, (visited 07.08.2023).

URL: https://en.wikipedia.org/wiki/Support vector machine.

[6] What is Dimensionality Reduction? Overview, and Popular Techniques. Simplilearn,

2023, (visited 09.06.2023).

URL: https://www.simplilearn.com/what-is-dimensionality-reduction-article.

[7] Principal Component Analysis. Wikipedia, 2023, (visited 09.06.2023).

URL: https://en.wikipedia.org/wiki/Principal component analysis.

[8] Data Cleansing. Wikipedia, 2023, (visited 09.12.2023).

URL: https://en.wikipedia.org/wiki/Data cleansing.

[9] Perceptron. Wikipedia, 2023, (visited 10.08.2023).

URL: https://en.wikipedia.org/wiki/Perceptron.

[10] Gram Matrix. Wikipedia, 2023, (visited 10.09.2023).

URL: https://en.wikipedia.org/wiki/Gram matrix.

[11] Hyperparameter (Machine Learning). Wikipedia, 2023, (visited 12.02.2023).

URL: https://en.wikipedia.org/wiki/Hyperparameter (machine learning).

107

https://en.wikipedia.org/wiki/Linear_separability
https://developers.google.com/machine-learning/data-prep/transform/introduction
https://developers.google.com/machine-learning/data-prep/transform/introduction
https://en.wikipedia.org/wiki/MNIST_database
https://en.wikipedia.org/wiki/Linear_inequality
https://en.wikipedia.org/wiki/Support_vector_machine
https://www.simplilearn.com/what-is-dimensionality-reduction-article
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Data_cleansing
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Gram_matrix
https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning)

[12] Training, Validation and Test Datasets. Wikipedia, 2023, (visited 14.06.2023).

URL: https://en.wikipedia.org/wiki/Training, validation, and test data sets.

[13] Data Standardization: How It’s Done Why It’s Important. Simplilearn, 2023, (vis-

ited 14.12.2023).

URL: https://www.simplilearn.com/what-is-data-standardization-article.

[14] Multivariate Normal Distribution. Wikipedia, 2023, (visited 18.12.2023).

URL: https://en.wikipedia.org/wiki/Multivariate normal distribution.

[15] Accuracy and Precision. Wikipedia, 2023, (visited 19.12.2023).

URL: https://en.wikipedia.org/wiki/Accuracy and precision.

[16] Likelihood Function. Wikipedia, 2023, (visited 20.11.2023).

URL: https://en.wikipedia.org/wiki/Likelihood function.

[17] Iris Flower Data Set. Wikipedia, 2023, (visited 23.10.2023).

URL: https://en.wikipedia.org/wiki/Iris flower data set.

[18] Multivariate Normal Distribution. Brilliant, (visited 01.07.2023).

URL: https://brilliant.org/wiki/multivariate-normal-distribution/.

[19] Tuning the hyper-parameters of an estimator. Scikit-Learn, (visited 03.12.2023).

URL: https://scikit-learn.org/stable/modules/grid search.html.

[20] What is Unsupervised Learning? IBM, (visited 06.02.2023).

URL: https://www.ibm.com/topics/unsupervised-learning.

[21] What is Machine Learning? IBM, (visited 09.02.2023).

URL: https://www.ibm.com/topics/machine-learning.

[22] Unsupervised Machine Learning. JavaTPoint, (visited 09.06.2023).

URL: https://www.javatpoint.com/unsupervised-machine-learning.

[23] 2.3. Clustering. Scikit-Learn, (visited 09.06.2023).

URL: https://scikit-learn.org/stable/modules/clustering.html.

[24] What Is a Machine Learning Pipeline? Datatron, (visited 10.02.2023).

URL: https://datatron.com/what-is-a-machine-learning-pipeline/.

[25] What Is a Machine Learning Pipeline? Valohai, (visited 10.02.2023).

URL: https://valohai.com/machine-learning-pipeline/.

108

https://en.wikipedia.org/wiki/Training,_validation,_and_test_data_sets
https://www.simplilearn.com/what-is-data-standardization-article
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://brilliant.org/wiki/multivariate-normal-distribution/
https://scikit-learn.org/stable/modules/grid_search.html
https://www.ibm.com/topics/unsupervised-learning
https://www.ibm.com/topics/machine-learning
https://www.javatpoint.com/unsupervised-machine-learning
https://scikit-learn.org/stable/modules/clustering.html
https://datatron.com/what-is-a-machine-learning-pipeline/
https://valohai.com/machine-learning-pipeline/

[26] Supervised Learning. Wikipedia, (visited 12.12.2023).

URL: https://en.wikipedia.org/wiki/Supervised learning.

[27] The McCulloch-Pitts Neuron. O’Reilly, (visited 13.08.2023).

URL: https://www.oreilly.com/library/view/artificial-intelligence-by/

9781788990547/97eeab76-9e0e-4f41-87dc-03a65c3efec3.xhtml.

[28] sklearn.datasets.make regression. Scikit-Learn, (visited 13.12.2023).

URL: https://scikit-learn.org/stable/modules/generated/

sklearn.datasets.make regression.html.

[29] API Reference. Scikit-Learn, (visited 14.12.2023).

URL: https://scikit-learn.org/stable/modules/classes.html.

[30] sklearn.datasets.make regression. Scikit-Learn, (visited 14.12.2023).

URL: https://scikit-learn.org/stable/modules/generated/

sklearn.datasets.make regression.html.

[31] sklearn.model selection.train test split. Scikit-Learn, (visited 14.12.2023).

URL: https://scikit-learn.org/stable/modules/generated/

sklearn.model selection.train test split.html.

[32] History of the Perceptron. California State University, (visited 16.08.2023).

URL: https://home.csulb.edu/~cwallis/artificialn/History.htm.

[33] Reinforcement Learning Tutorial. JavaTpoint, (visited 16.09.2023).

URL: https://www.javatpoint.com/reinforcement-learning.

[34] What is Reinforcement Learning? Synopsys, (visited 16.09.2023).

URL: https://www.synopsys.com/ai/what-is-reinforcement-learning.html.

[35] AlphaZero: Shedding new light on chess, shogi, and Go. Deepmind, (visited

18.09.2023).

URL: https://www.deepmind.com/blog/alphazero-shedding-new-light-on-chess-shogi-

and-go.

[36] What is Linear Regression? IBM, (visited 18.11.2023).

URL: https://www.ibm.com/topics/linear-regression.

[37] RBF SVM parameters. Scikit-Learn, (visited 19.12.2023).

URL: https://scikit-learn.org/stable/auto examples/svm/plot rbf parameters.html.

109

https://en.wikipedia.org/wiki/Supervised_learning
https://www.oreilly.com/library/view/artificial-intelligence-by/9781788990547/97eeab76-9e0e-4f41-87dc-03a65c3efec3.xhtml
https://www.oreilly.com/library/view/artificial-intelligence-by/9781788990547/97eeab76-9e0e-4f41-87dc-03a65c3efec3.xhtml
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://home.csulb.edu/~cwallis/artificialn/History.htm
https://www.javatpoint.com/reinforcement-learning
https://www.synopsys.com/ai/what-is-reinforcement-learning.html
https://www.deepmind.com/blog/alphazero-shedding-new-light-on-chess-shogi-and-go
https://www.deepmind.com/blog/alphazero-shedding-new-light-on-chess-shogi-and-go
https://www.ibm.com/topics/linear-regression
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

[38] Kernel Method. Wikipedia, (visited 22.08.2023).

URL: https://en.wikipedia.org/wiki/Kernel method.

[39] sklearn.datasets.make moons. Scikit-Learn, (visited 23.10.2023).

URL: https://scikit-learn.org/stable/modules/generated/

sklearn.datasets.make moons.html.

[40] What is Noise in Data Mining? JavaTpoint, (visited 30.10.2023).

URL: https://www.javatpoint.com/what-is-noise-in-data-mining.

[41] What is a Support Vector Machine? MathWorks, (visited 31.10.2023).

URL: https://nl.mathworks.com/discovery/support-vector-machine.html.

[42] N. Agnihotri. Classification of machine learning algorithms. EngineersGarage, (vis-

ited 07.06.2023).

URL: https://www.engineersgarage.com/machine-learning-algorithms-classification/.

[43] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer, 2017.

ISBN 978-3-319-68912-8.

[44] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press,

2012.

[45] A. Beck. Introduction To Nonliner Optimisation. Orient Blackswan, 2017. ISBN

978-9386235350.

[46] J. Bergstra and Y. Bengio. Random Search for Hyper-Parameter Optimization. In

Journal of Machine Learning Research, Vol. 13, pages 281–305. JMLR, Inc. and

Microtome Publishing, 2012.

[47] M. Bernstein. The Radial Basis Function Kernel. University of Wisconsin-Madison,

(visited 05.11.2023).

URL: https://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/svms/RBFKernel.pdf.

[48] D. Bertsekas. Nonlinear Programming. Athena Scientific, 1995. ISBN 978-1-886529-

05-2.

[49] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. ISBN 978-

0387-31073-2.

[50] S. Brown. Machine Learning Explained. MIT Sloan School, 2021, (visited

02.06.2023).

URL: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained.

110

https://en.wikipedia.org/wiki/Kernel_method
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://www.javatpoint.com/what-is-noise-in-data-mining
https://nl.mathworks.com/discovery/support-vector-machine.html
https://www.engineersgarage.com/machine-learning-algorithms-classification/
https://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/svms/RBFKernel.pdf
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained

[51] J. Brownlee. Why One-Hot Encode Data in Machine Learning. Machine Learning

Mastery, 2017, (visited 06.06.2023).

URL: https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-

learning/.

[52] J. Brownlee. Why Do Machine Learning Algorithms Work on New Data? Machine

Learning Mastery, 2018, (visited 14.09.2023).

URL: https://machinelearningmastery.com/what-is-generalization-in-machine-

learning/.

[53] J. Brownlee. Difference Between Algorithm and Model in Machine Learning.

Machine Learning Mastery, 2020, (visited 10.06.2023).

URL: https://machinelearningmastery.com/difference-between-algorithm-and-model-

in-machine-learning/.

[54] J. Brownlee. No Free Lunch Theorem for Machine Learning. Machine Learning

Mastery, 2021, (visited 21.09.2023).

URL: https://machinelearningmastery.com/no-free-lunch-theorem-for-machine-

learning/.

[55] A. Chandra. McCulloch-Pitts Neuron — Mankind’s First Mathematical Model Of A

Biological Neuron. Medium, (visited 13.08.2023).

URL: https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1.

[56] A. Chervonenkis. Early History of Support Vector Machines. In Empirical Inference:

Festschrift in Honor of Vladimir N. Vapnik, pages 13–20. Springer, 2013. ISBN 978-

3-642-41135-9.

[57] B. Copeland. Artificial Intelligence. Encyclopædia Britannica, Inc., 2022, (visited

09.02.2023).

URL: https://www.britannica.com/technology/artificial-intelligence.

[58] C. Cortes and V. Vapnik. Support-Vector Networks. ATT Bell Labs, 1995.

[59] P. Domingos. The Master Algorithm. Basic Books, 2015. ISBN 978-0-465-06192-1.

[60] P. Felzenszwalb. Large Margin Separators. Brown University, 2017, (visited

25.09.2023).

URL: https://cs.brown.edu/people/pfelzens/engn2520/CS1420 Lecture 10.pdf.

[61] R. Fisher. Iris. UCI Machine Learning Repository, 1988, (visited 19.12.2023).

URL: https://archive.ics.uci.edu/dataset/53/iris.

111

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/what-is-generalization-in-machine-learning/
https://machinelearningmastery.com/what-is-generalization-in-machine-learning/
https://machinelearningmastery.com/difference-between-algorithm-and-model-in-machine-learning/
https://machinelearningmastery.com/difference-between-algorithm-and-model-in-machine-learning/
https://machinelearningmastery.com/no-free-lunch-theorem-for-machine-learning/
https://machinelearningmastery.com/no-free-lunch-theorem-for-machine-learning/
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
https://www.britannica.com/technology/artificial-intelligence
https://cs.brown.edu/people/pfelzens/engn2520/CS1420_Lecture_10.pdf
https://archive.ics.uci.edu/dataset/53/iris

[62] N. Hobbs. Kernel SVM for Image Classification. NathanielHobbs, 2018, (visited

02.09.2023).

URL: http://www.nathanielhobbs.com/documents/cvx opt/cvx opt final report.pdf.

[63] T. Hovsepyan. What is Machine Learning Model Deployment. Plat, 2022, (visited

14.06.2023).

URL: https://plat.ai/blog/machine-learning-model-deployment/.

[64] IBM. Data Pipelines Explained. Youtube, 2022, (visited 10.02.2023).

URL: https://www.youtube.com/watch?v=6kEGUCrBEU0&ab channel=IBMTechnology.

[65] K. Berk J. Devore and M. Carlton. Modern Mathematical Statistics with Applica-

tions. Springer, 2021. ISBN 978-3-030-55155-1.

[66] C. Kang. Image Classification with Cat and Dog. Github, 2020, (visited 06.06.2023).

URL: https://goodboychan.github.io/python/deep learning/tensorflow-keras/vision/

2020/10/16/01-Image-Classification-with-Cat-and-Dog.html.

[67] S. Luke. Essentials of Metaheuristics. Lulu, 2013. ISBN 978-1-300-54962-8.

[68] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous

activity. In The bulletin of mathematical biophysics, Vol. 5, pages 115–133. Springer,

1943.

[69] R. Misra. Support Vector Machines — Soft Margin Formulation and Kernel Trick.

Medium, 2019, (visited 05.09.2023).

URL: https://towardsdatascience.com/support-vector-machines-soft-margin-

formulation-and-kernel-trick-4c9729dc8efe.

[70] K. Murphy. Machine Learning A Probabilistic Perspective. Cambridge, MA, 2012.

MIT Press. ISBN 978-0-262-01802-9.

[71] R. Nian. A review On reinforcement learning: Introduction and applications in indus-

trial process control. In Computers Chemical Engineering, Vol. 139. ScienceDirect,

2020.

[72] T. Okuno and A. Takeda. Bilevel Optimization of Regularization Hyperparameters

in Machine Learning. In Springer Optimization and Its Applications, Vol. 161, pages

169–194. Springer, 2020. ISBN 978-3-030-52118-9.

[73] H. Pishro-Nik. Introduction to Probability, statistics, and Random Processes. Kappa

Research, LLC, 2014. ISBN 978-0990637202.

112

http://www.nathanielhobbs.com/documents/cvx_opt/cvx_opt_final_report.pdf
https://plat.ai/blog/machine-learning-model-deployment/
https://www.youtube.com/watch?v=6kEGUCrBEU0&ab_channel=IBMTechnology
https://goodboychan.github.io/python/deep_learning/tensorflow-keras/vision/2020/10/16/01-Image-Classification-with-Cat-and-Dog.html
https://goodboychan.github.io/python/deep_learning/tensorflow-keras/vision/2020/10/16/01-Image-Classification-with-Cat-and-Dog.html
https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe
https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe

[74] S. Ramamoorthy. The Principle of Maximum Likelihood. (visited 07.06.2023).

URL: https://blog.suriya.app/2017-01-22-mle-linear-regression/.

[75] C. Rasmussen and C. Williams. Gaussian Process for Machine Learning. Cambridge,

MA, 2006. MIT Press. ISBN 026218253X.

[76] F. Rosenblatt. The Perceptron — A Perceiving and Recognizing Automaton. In Re-

port: Cornell Aeronautical Laboratory, Vol. 85, pages 460–461. Cornell Aeronautical

Laboratory, 1957.

[77] sagarika3kundu (username). ML — Feature Mapping. GeeksforGeeks, 2023, (visited

22.08.2023).

URL: https://www.geeksforgeeks.org/feature-mapping/.

[78] D. Sontag. Support Vector Machines Kernels Lecture 6. MIT CSAIL, (visited

02.09.2023).

URL: http://people.csail.mit.edu/dsontag/courses/ml12/slides/lecture6.pdf.

[79] M. Taboga. ”Ridge Regression”, Lectures on Probability Theory and Mathematical

Statistics. Kindle Direct Publishing, 2021, (visited 27.11.2023).

URL: https://www.statlect.com/fundamentals-of-statistics/ridge-regression.

[80] AIxplained (username). Automated Machine Learning: Grid Search and Random

Search. Youtube, 2022, (visited 03.12.2023).

URL: https://www.youtube.com/watch?v=zzGNjh37Li8&ab channel=AIxplained.

[81] IFCAR (username). File:2011 Hyundai Elantra GLS – 06-02-2011 2.jpg. Wikipedia,

2011, (visited 13.10.2023).

URL: https://commons.wikimedia.org/w/index.php?curid=15477040.

[82] Sidartha (username). Hyperplane svm example class separation classification

problem. Adobe Systems, (visited 05.07.2023).

URL: https://stock.adobe.com/no/contributor/209665167/sidartha?load type=

author&prev url=detail&asset id=382138217.

[83] SydneyF (username). There is No Free Lunch in Data Science. Alteryx, 2019,

(visited 09.02.2023).

URL: https://community.alteryx.com/t5/Data-Science/There-is-No-Free-Lunch-in-

Data-Science/ba-p/347402.

[84] M. Walsh. ChatGPT Statistics (2023) — The Key Facts and Figures. Style Factory,

2023, (visited 02.12.2023).

URL: https://www.stylefactoryproductions.com/blog/chatgpt-statistics.

113

https://blog.suriya.app/2017-01-22-mle-linear-regression/
https://www.geeksforgeeks.org/feature-mapping/
http://people.csail.mit.edu/dsontag/courses/ml12/slides/lecture6.pdf
https://www.statlect.com/fundamentals-of-statistics/ridge-regression
https://www.youtube.com/watch?v=zzGNjh37Li8&ab_channel=AIxplained
https://commons.wikimedia.org/w/index.php?curid=15477040
https://stock.adobe.com/no/contributor/209665167/sidartha?load_type=author&prev_url=detail&asset_id=382138217
https://stock.adobe.com/no/contributor/209665167/sidartha?load_type=author&prev_url=detail&asset_id=382138217
https://community.alteryx.com/t5/Data-Science/There-is-No-Free-Lunch-in-Data-Science/ba-p/347402
https://community.alteryx.com/t5/Data-Science/There-is-No-Free-Lunch-in-Data-Science/ba-p/347402
https://www.stylefactoryproductions.com/blog/chatgpt-statistics

[85] K. Weinberger. Linear Regression. Cornell University, (visited 08.02.2023).

URL: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote08.html.

[86] K. Weinberger. Lecture 9: SVM. Cornell University, (visited 08.02.2023).

URL: http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote09.html.

[87] K. Weinberger. Lecture 3: The Perceptron. Cornell University, (visited 14.08.2023).

URL: http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html.

[88] K. Weinberger. Lecture 13: Kernels. Cornell University, (visited 22.08.2023).

URL: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote13.html.

[89] D. Wolpert and W. Macready. No Free Lunch Theorems for Optimization. In Trans-

actions on Evolutionary Computation, Vol. 1, pages 67–82. IEEE, 1997.

[90] Q. Wu and P. Vos. Inference and Prediction. In Handbook of Statistics, Vol. 38,

pages 111–172. Elsevier, 2018.

[91] X. Yan. Linear Regression Analysis: Theory and Computing. World Scientific, 2009.

ISBN 978-981-283-410-2.

[92] L. Yang and A. Shami. On Hyperparameter Optimization of Machine Learning Algo-

rithms: Theory and Practice. In Neurocomputing, Vol. 415, pages 295–316. Elsevier,

2020. ISBN 0925-2312.

[93] J. Álvarez. Support Vector Machine and Kernel Classification Algorithms. In Digital

Signal Processing with Kernel Methods, pages 433–502. Wiley-IEEE Press, 2018.

ISBN 9781118705810.

114

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote08.html
http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote09.html
http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote13.html

	Introduction
	Fundamental Optimization Principles
	Non-Linear Optimization
	Convex Optimization

	Foundations of Machine Learning (ML)
	The Primary Subfields of ML
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning (RL)

	The ML Pipeline
	The No-Free-Lunch Theorems

	Optimization In Linear Regression
	General Framework
	Maximum Likelihood Estimation (MLE) for Linear Regression
	Maximum Likelihood Estimation (MLE)
	Optimization Model
	Closed-Form Solution

	Maximum a Posteriori (MAP) for Linear Regression
	Maximum a Posteriori (MAP)
	Optimization Model
	Closed-Form Solution

	Optimization In Support Vector Machines (SVM)
	Rosenblatt's Perceptron
	The McCulloch-Pitts Neuron
	Invention of the Perceptron

	Hard-Margin SVM
	Soft-Margin SVM
	Primal Formulation
	Dual Formulation

	Feature Mapping and Kernels
	Feature Mapping
	Kernel Functions and Kernels

	Kernel SVM

	Hyperparameter Optimization (HPO)
	Optimization Model
	HPO Algorithms
	Grid Search
	Random Search

	Numerical Experiments
	Datasets and Programming Setup
	Regression Datasets
	Classification Datasets
	Programming Setup

	SL Algorithms
	Linear Regression
	Soft-Margin SVM
	Kernel SVM

	Conclusion
	Abbreviations and Notation
	Bibliography

